Trapped atomic ions are ideal single photon emitters with long-lived internal states which can be entangled with emitted photons. Coupling the ion to an optical cavity enables the efficient emission of single photons into a single spatial mode and grants control over their temporal shape. These features are key for quantum information processing and quantum communication. However, the photons emitted by these systems are unsuitable for long-distance transmission due to their wavelengths. Here we report the transmission of single photons from a single ^{40}Ca^{+} ion coupled to an optical cavity over a 10 km optical fiber via frequency conversion from 866 nm to the telecom C band at 1530 nm. We observe nonclassical photon statistics of the direct cavity emission, the converted photons, and the 10 km transmitted photons, as well as the preservation of the photons' temporal shape throughout. This telecommunication-ready system can be a key component for long-distance quantum communication as well as future cloud quantum computation.
Noise measurement is a powerful tool to investigate many phenomena from laser characterization to quantum behavior of light. In this paper, we report on intensity noise measurements obtained when a laser beam is transmitted through a large cloud of cold atoms. While this measurement could possibly investigate complex processes such as the influence of atomic motion, one is first limited by the conversion of the intrinsic laser frequency noise to intensity noise via the atomic resonance. This conversion is studied here in details. We show that, while experimental intensity noise spectra collapse onto the same curve at low Fourier frequencies, some differences appear at higher frequencies when the probe beam is detuned from the center of the resonance line. A simple model, based on a mean-field approach, which corresponds to describing the atomic cloud by a dielectric susceptibility, is sufficient to understand the main features. Using this model, the noise spectra allow extracting some quantitative informations on the laser noise as well as on the atomic sample.
The time-dependent Mandel Q parameter, Q(T), provides a measure of photon number variance for a light source as a function of integration time. Here, we use Q(T) to characterise single photon emission from a quantum emitter in hexagonal boron nitride (hBN). Under pulsed excitation a negative Q parameter was measured, indicating photon antibunching at an integration time of 100 ns. For larger integration times Q is positive and the photon statistics become super-Poissonian, and we show by comparison with a Monte Carlo simulation for a three-level emitter that this is consistent with the effect of a metastable shelving state. Looking towards technological applications for hBN single photon sources, we propose that Q(T) provides valuable information on the intensity stability of single photon emission. This is useful in addition to the commonly used g(2)(τ) function for the complete characterisation of a hBN emitter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.