An intrusion detection system (IDS) is a device or software application that monitors a network for malicious activity or policy violations. It scans a network or a system for a harmful activity or security breaching. IDS protects networks (Network-based intrusion detection system NIDS) or hosts (Host-based intrusion detection system HIDS), and work by either looking for signatures of known attacks or deviations from normal activity. Deep learning algorithms proved their effectiveness in intrusion detection compared to other machine learning methods. In this paper, we implemented deep learning solutions for detecting attacks based on Long Short-Term Memory (LSTM). PCA (principal component analysis) and Mutual information (MI) are used as dimensionality reduction and feature selection techniques. Our approach was tested on a benchmark data set, KDD99, and the experimental outcomes show that models based on PCA achieve the best accuracy for training and testing, in both binary and multiclass classification.
Over the past few decades, due to human activities, industrialization, and urbanization, air pollution has become a life-threatening factor in many countries around the world. Among air pollutants, Particulate Matter with a diameter of less than $$2.5 \mu m$$ 2.5 μ m ($$PM_{2.5}$$ P M 2.5 ) is a serious health problem. It causes various illnesses such as respiratory tract and cardiovascular diseases. Hence, it is necessary to accurately predict the $$PM_{2.5}$$ P M 2.5 concentrations in order to prevent the citizens from the dangerous impact of air pollution beforehand. The variation of $$PM_{2.5}$$ P M 2.5 depends on a variety of factors, such as meteorology and the concentration of other pollutants in urban areas. In this paper, we implemented a deep learning solution to predict the hourly forecast of $$PM_{2.5}$$ P M 2.5 concentration in Beijing, China, based on CNN-LSTM, with a spatial-temporal feature by combining historical data of pollutants, meteorological data, and $$PM_{2.5}$$ P M 2.5 concentration in the adjacent stations. We examined the difference in performances among Deep learning algorithms such as LSTM, Bi-LSTM, GRU, Bi-GRU, CNN, and a hybrid CNN-LSTM model. Experimental results indicate that our method “hybrid CNN-LSTM multivariate” enables more accurate predictions than all the listed traditional models and performs better in predictive performance.
As credit card becomes the most popular payment mode particularly in the online sector, the fraudulent activities using credit card payment technologies are rapidly increasing as a result. For this end, it is obligatory for financial institutions to continuously improve their fraud detection systems to reduce huge losses. The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data, using attention mechanism and LSTM deep recurrent neural networks. The proposed model, compared to previous studies, considers the sequential nature of transactional data and allows the classifier to identify the most important transactions in the input sequence that predict at higher accuracy fraudulent transactions. Precisely, the robustness of our model is built by combining the strength of three sub-methods; the uniform manifold approximation and projection (UMAP) for selecting the most useful predictive features, the Long Short Term Memory (LSTM) networks for incorporating transaction sequences and the attention mechanism to enhance LSTM performances. The experimentations of our model give strong results in terms of efficiency and effectiveness.
The purpose of this study is to develop and test machine learning-based models for COVID-19 severity prediction. COVID-19 test samples from 337 COVID-19 positive patients at Cheikh Zaid Hospital were grouped according to the severity of their illness. Ours is the first study to estimate illness severity by combining biological and non-biological data from patients with COVID-19. Moreover the use of ML for therapeutic purposes in Morocco is currently restricted, and ours is the first study to investigate the severity of COVID-19. When data analysis approaches were used to uncover patterns and essential characteristics in the data, C-reactive protein, platelets, and D-dimers were determined to be the most associated to COVID-19 severity prediction. In this research, many data reduction algorithms were used, and Machine Learning models were trained to predict the severity of sickness using patient data. A new feature engineering method based on topological data analysis called Uniform Manifold Approximation and Projection (UMAP) shown that it achieves better results. It has 100% accuracy, specificity, sensitivity, and ROC curve in conducting a prognostic prediction using different machine learning classifiers such as X_GBoost, AdaBoost, Random Forest, and ExtraTrees. The proposed approach aims to assist hospitals and medical facilities in determining who should be seen first and who has a higher priority for admission to the hospital.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.