Nonalcoholic steatohepatitis (NASH) is characterized by hepatic steatosis with inflammation and fibrosis. Membrane endoglin (Eng) expression is shown to participate in fibrosis, and plasma concentrations of soluble endoglin (sEng) are increased in patients with hypercholesterolemia and type 2 diabetes mellitus. We hypothesize that NASH increases both hepatic Eng expression and sEng in blood and that high levels of sEng modulate cholesterol and bile acid (BA) metabolism and affect NASH progression. Three-month-old transgenic male mice overexpressing human sEng and their wild type littermates are fed for six months with either a high-saturated fat, high-fructose high-cholesterol (FFC) diet or a chow diet. Evaluation of NASH, Liquid chromatography–mass spectrometry (LC/MS) analysis of BA, hepatic expression of Eng, inflammation, fibrosis markers, enzymes and transporters involved in hepatic cholesterol and BA metabolism are assessed using Real-Time Quantitative Reverse Transcription Polymerase Chain reaction (qRT-PCR) and Western blot. The FFC diet significantly increases mouse sEng levels and increases hepatic expression of Eng. High levels of human sEng results in increased hepatic deposition of cholesterol due to reduced conversion into BA, as well as redirects the metabolism of triglycerides (TAG) to its accumulation in the liver, via reduced TAG elimination by β-oxidation combined with reduced hepatic efflux. We propose that sEng might be a biomarker of NASH development, and the presence of high levels of sEng might support NASH aggravation by impairing the essential defensive mechanism protecting NASH liver against excessive TAG and cholesterol accumulation, suggesting the importance of high sEng levels in patients prone to develop NASH.
This study examines histometrical changes induced by sodium arsenite (SA), as an environmental pollutant, and investigates the protective effect of α-tocopherol on ovaries of SA-treated rats during the prenatal stage until sexual maturity. Rats were classified into groups: control, SA (8 ppm/day), α-tocopherol (100 ppm/day), and SA+α-tocopherol. Treatment was performed from pregnancy until maturation when the rats and ovaries were weighed. The Cavalieri method was used to estimate volume of the ovaries, cortex, medulla, and corpus luteum. The mean diameter of oocytes, granulosa cells, and nuclei were measured and volume was estimated using the Nucleator method. The number of oocytes and thickness of the zona pellucida (ZP) were determined using an optical dissector and orthogonal intercept method, respectively. SA reduced the body and ovary weight, the number of secondary, antral and Graafian oocytes, volume of the ovaries, cortex, medulla and corpus luteum, mean diameter and volume of oocytes in primordial and primary follicles, mean diameter and volume of oocyte nuclei in all types of follicles, and mean thickness of the ZP in secondary and antral follicles. Also, the mean diameter and volume of granulosa cells and their nuclei in antral and Graafian follicles decreased significantly. Vacuolization and vascular congestion in the corpus luteum and an increase in the number of atretic oocytes were seen in the SA group. Most of these parameters were unchanged from the control level in the SA+α-tocopherol group. It was concluded that α-tocopherol supplementation reduced the toxic effects of SA exposure on ovarian tissue in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.