NAD is mainly biosynthesized by the enzymatic action of nicotinamide phosphoribosyltransferase (NAMPT) through the salvage pathway. NAD is indispensable for the proper function and metabolism of all living cells, including cancer cells. Our previous researches revealed that inhibition of NAMPT by miRNA (miR) could suppress NAD levels and thereby hinder the growth and promotion of breast cancer (BC). Therefore, the current study was undertaken to investigate the inhibitory effects of miR-613 on NAMPT and BC cells' survival. Bioinformatics analysis and luciferase reporter assay confirmed that NAMPT 3¢-untranslated region is a direct target for miR-613. The expression of miR-613 was noticed to be significantly decreased in both clinical tissue samples and BC cells by real-time PCR. Following transfection with miR-613 mimic, the expression of miR-613 was elevated in the BC cells leading to inhibition of NAMPT expression at both mRNA and protein level as measured by real-time PCR and western blotting, respectively. Inhibition of NAMPT led to a remarkable reduction in the concentration of NAD in the BC cells NAMPT. The transfection also declined cell viability roughly 40% in MD Anderson-Metastatic Breast-231 (MDA-MB-231) cells. Consistently, the apoptosis rate was remarkably increased, around 65% in these cells as assayed by labeling the cells with Annexin Vfluorescein isothiocyanate (FITC) and Propidium Iodide. Targeting the NAMPT-mediated NAD salvage pathway by miR-613 is a novel approach for managing BC, which is worth further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.