Diabetic foot infection is considered to be one of the most important medical, economic, and social problems and a major cause of morbidity and mortality. Proteus mirabilis is a common etiologic agent of diabetic foot infections. This study aimed to determine the prevalence of beta-lactamase genes in P. mirabilis recovered from patients with diabetic foot wounds in Erbil, Iraq. Eighteen P. mirabilis isolated from 84 patients with diabetic foot ulcers were first phenotypically examined for the existence of extended-spectrum beta-lactamases by combined disc method and double-disc synergy method that all isolates showed positive results by both methods. The results were confirmed genetically by PCR to detect beta-lactamase-encoding genes (bla TEM , bla SHV , bla CTX-M , bla OXA , and bla DHA ). The results revealed that all isolates contained extended-spectrum beta-lactamase and that 80% of the P. mirabilis isolates contained bla DHA , 60% had bla TEM , 53.3% had bla OXA , and 26.7% had bla CTX-M , whereas no isolates harbored bla SHV . The coexistence of two or more beta-lactamase genes in one isolate was observed. The existence of four genes (bla TEM + bla CTX-M + bla OXA + bla DHA ) in the same isolate was documented in two isolates. In conclusion, this is the first study that reports a high prevalence of bla DHA and the coexistence of four resistance genes in the same organism in P. mirabilis isolated from diabetic foot patients in Iraq.
Detection of mannitol fermenting coagulase-negative staphylococci is frequently unnoticed when Staphylococcus aureus is screening in the laboratory. On the other hand, the emergence of coagulase-negative staphylococci as critical human pathogens need dependable methods for the identification of clinically significant coagulase-negative staphylococci to understand the epidemiology of infections caused by these bacteria. The study aimed to identify mannitol fermenting coagulase-negative staphylococci that assumed to be Staphylococcus aureus as they formed yellow colonies on Mannitol Salt agar plates. Samples were taken from eighty-four patients with diabetic foot infections. The specimen was cultured on Blood agar and Mannitol Salt agar. Mannitol fermenting coagulase-negative staphylococci isolates diagnosed through Vitek2 system then confirmed by detecting 16S rRNA gene and absence of the nuc gene. Antibiotic sensitivity and methicillin resistance were detected by Vitek2 system, then methicillin resistance was confirmed by Oxacillin Salt Agar Screen test and detection of the mecA gene. Out of 81 Staphylococcus isolated from foot and nose of diabetic foot patients, twenty isolates were mannitol fermenting coagulase-negative staphylococci, they related to following species; Staphylococcus haemolyticus, staphylococcus lentus, Staphylococcus xylosus, Staphylococcus lugdunensis, Staphylococcus hominis, Staphylococcus galinarum and Staphylococcus saprophyticus). The majority of them (85%) were phenotypically methicillin-resistant and genotypically harbouring mecA gene. 80% were resistant to Erythromycin, 70% to Clindamycin, 35% to Trimethoprim-Sulphamethoxazole, 30% to Gentamicin and Rifampicin, 15% to Levofloxacin and Teicoplanin. 30% expressed inducible clindamycin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.