The parameters derived from the Scheimpflug device, such as corneal elevations and overall D value, can effectively differentiate subclinical and clinical keratoconus from non-keratoconic thin cornea eyes. However, the specificity levels of these parameters were relatively limited in the diagnosis of subclinical keratoconus.
Objectives:To evaluate tomographic and topographic parameters in subclinical and clinical keratoconus eyes by comparing them with normal eyes in a young Caucasian population.Materials and Methods:This cross-sectional study included 88 normal eyes (control group), bilateral data from the preclinical stage of 24 progressive keratoconus eyes (bilateral subclinical keratoconus group), 40 fellow eyes of patients with unilateral keratoconus (fellow eyes group) and 97 eyes with mild keratoconus (clinical keratoconus group). Topographic and tomographic data, data from enhanced elevation maps and keratoconus indices were measured in all study eyes using Scheimpflug tomography. Receiver operating characteristic (ROC) curve analysis was used to assess individual parameters to discriminate eyes of patients with subclinical and clinical keratoconus from control eyes. The sensitivity and specificity of the main effective parameters were evaluated and optimal cut-off points were identified to differentiate subclinical keratoconus and keratoconus from normal corneas.Results:Comparison of all subclinical and clinical keratoconus eyes from the normal group revealed significant differences in most diagnostic parameters. The ROC curve analysis showed high overall predictive accuracy of several Pentacam parameters (overall D value, anterior and posterior elevations and difference elevations, pachymetry progression index, index of surface variance, index of height decentration and keratoconus index) in discriminating ectatic corneas from normal ones. These outcomes were proportionally less pronounced in all subclinical keratoconus eyes than in the clinical keratoconus eyes. Pachymetric readings were progressively lower in the bilateral subclinical keratoconus eyes and sensitivity and specificity of the analyzed tomographic and topographic parameters were higher than the fellow eyes group when differentiating subclinical keratoconus from healthy corneas.Conclusion:Scheimpflug tomography parameters such as D value, elevation parameters, progression index and several surface indices can effectively differentiate keratoconus from normal corneas in a Caucasian population. Nevertheless, a combination of different data is required to distinguish subclinical keratoconus.
The p.(Val113Ile) mutation results in an alteration of the atypical LCD phenotype associated with the p.(Leu558Pro) mutation. This represents only the second report of the alteration of the phenotype of a dystrophy by a second, non-homozygous pathogenic mutation, and thus provides insight into the phenotype-genotype correlation of the dystrophies.
This study suggests that after removal of the corneal inlay, corneal topography and corneal aberrometry are not permanently affected. In more than 60% of patients, CNVA, CDVA, UNVA, and UDVA were similar to the preoperative value.
n the last 2 decades, phakic intraocular lenses (PIOLs) have proven to be a safe and reliable method for correcting high myopia, hyperopia, and astigmatism when adequate inclusion criteria for implantation are applied. 1-6 However, complications relating to PIOLs can be more severe and disabling than those of keratorefractive surgery. The first successful model distributed worldwide was the Baikoff ZB (Domilens) in 1986. 7 Several studies 8-10 have reported the refractive predictability and safety for these models; the longest reported follow-up periods were of 7 and 12 years. 11,12 However, because available data concerning the long-term follow-up of eyes implanted with PIOLs remain limited, the stability in terms of efficacy, safety, and predictability has not yet been demonstrated for a period of more than 15 years. In this study, we report the results of a large, retrospective, nonrandomized, cumulative clinical study performed in a consecutive group of patients implanted with the ZB5M angle-supported PIOL. We describe the refractive status and the main parameters related to ocular safety evaluated 15 years and more after implantation. Methods Patients who were implanted with the Baikoff ZB at VISSUM Corporación Oftalmológica de Alicante between 1990 and 1996 were identified through surgical records (n = 123; 208 eyes). IMPORTANCE This study confirmed the long-term outcomes of the ZB5M phakic intraocular lens (PIOL). OBJECTIVE To evaluate the potential long-term risk associated with ZB5M PIOL implantation. DESIGN, SETTING, AND PARTICIPANTS A retrospective, nonrandomized, consecutive cohort study of a total of 208 eyes implanted with ZB5M PIOLs at VISSUM Corporación Oftalmológica de Alicante between 1990 and 1996 identified through surgical records (208 eyes of 123 patients); 50 of these patients (97 eyes) had available records and follow-up. INTERVENTION ZB5M PIOL implantation. MAIN OUTCOMES AND MEASURES To evaluate the incidence and onset of each complication during the follow-up and risk factors and causes for loss of visual acuity. RESULTS Mean (SD) preoperative spherical equivalent refraction was −19.36 (6.7) diopters and at the end of follow-up, it was −1.4 (2.6) diopters. Mean (SD) best-corrected visual acuity at the preoperative visit was 0.35 (0.2) decimal and at the end of follow-up, 0.56 (0.3) decimal. Mean (SD) endothelial cell density preoperatively and at the end of follow-up was 2783 (787) cells/mm 2 and 1921 (672) cells/mm 2 , respectively. The incidence of cataract during the follow-up was 0.010 eye-year (EY); cornea decompensation, 0.001 EY; ocular hypertension, 0.008 EY; pupil ovalization, 0.020 EY; uveitis, 0.001 EY; and retinal detachment, 0.002 EY. CONCLUSIONS AND RELEVANCE To our knowledge, this is the first study that describes the long-term outcomes and complications of ZB5M PIOLs and suggests increasing the postoperative follow-up examinations in patients older than 40 years, analyzing anterior chamber modifications, and recommends PIOL explantation in cases of an increase in the crys...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.