Plastic-containing shredder residue material has the potential to be used as an alternative reducing agent in nonferrous bath smelting processes. This would lead to not only decreased dependency on primary sources such as coal or coke but also to an increase in the efficiency of utilization of secondary sources. This calls for systematic scientific investigations, wherein these secondary sources are compared with primary sources with respect to devolatilization characteristics, combustion characteristics, reactivity, etc. As a first step, in this paper, devolatilization characteristics of plastic-containing shredder residue material (SRM) are compared to those of coal using thermogravimetric analysis. Proximate analysis has shown that SRM mainly decomposes by release of volatiles, while coal shows high fixed carbon content, which is reported to contribute to reduction reactions. To study the reduction potential of the evolved materials, composition of evolved off-gas was continuously monitored using quadrupole mass spectroscopy. The composition of volatiles shows H 2 , CO, and hydrocarbons which are known to have reduction potential. Therefore, it is essential that SRM would be used in a process that could utilize the evolved volatiles for reduction. Furthermore, to understand the potentials of different plastic materials as reducing agents, the devolatilization mechanisms and volatile composition of three common plastics, namely, polyethylene, polyurethane, and polyvinylchloride and their mixtures have been studied. The results show the interaction between the plastics within the binary and ternary mixtures. Similar phenomena may occur during devolatilization of SRM, which contains different type of plastics.
Shredder residue materials are produced after the removal of ferrous and non-ferrous fractions from end-of-life electronic equipment. Despite the high plastic content and metal value in the ash, high percentages of these materials are currently sent to landfills. In this study, the potential of utilising shredder residue material and other plastic-containing materials as reducing agents was studied. Plastic-containing materials were co-injected with coal into a zinc-fuming furnace in Boliden-Rönnskär smelter. The data obtained from the trial, such as the data from the chemical analysis of the slag and the steam production, are discussed. The observations indicate that plasticcontaining material can replace up to 1 ton h −1 of coal without a significant decrease in the zinc reduction rate. RÉSUMÉ Les résidus de broyeur sont produits après l'élimination des fractions ferreuses et non ferreuses de l'équipement électronique en fin de vie. En dépit de la haute teneur en plastique et de la valeur du métal dans la cendre, des pourcentages élevés de ces matériaux sont présentement envoyés dans les décharges. Dans cette étude, on a examiné le potentiel d'utilisation de résidus de broyeur et autres matériaux contenant du plastique comme agents réducteurs. On a co-injecté avec du charbon des matériaux contenant du plastique, dans un four de volatilisation du zinc, à la fonderie de Boliden-Rönnskär. On discute les données obtenues à partir de cet essai, comme les données de l'analyse chimique de la scorie et de la production de vapeur. Les observations indiquent que le matériau contenant du plastique peut remplacer jusqu'à 1 tonne/heure de charbon, sans diminution importante du taux de réduction du zinc.
Shredder residue material (SRM) contains plastic material, which has a potential to replace metallurgical coal for reduction during bath-smelting processes. Among the important parameters affecting its implementation are the gasification and the reactivity of char. Therefore, prior to considering its application in metallurgical processes, the gasification characteristics of the produced char need to be studied. Although the char produced from SRM contains lower fixed carbon compared with coal char, it has a porous structure and high surface area, which makes it highly reactive during gasification experiments. In addition to physiochemical properties, the catalytic effect of ash content of SRM char is attributed to its higher reactivity and lower activation energy compared with coal char. Furthermore, the effect of devolatilization heating rate on the gasification characteristics of produced char is investigated. It was found that the devolatilization heating rate during char production has a considerable effect on morphological properties of the char product. Moreover, the gasification reactivity of char produced at a fast devolatilization heating rate was the highest, due to the less crystalline structure of the produced char. Keywords Shredder residue material Á Char Á Gasification Á Reducing agent Á Bath smelting List of Symbols X Char conversion w 0 Initial weight of char w ? Saturation value of the weight-loss curve w(t) Sample weight at a time t r Gasification rate of the isothermal gasification q Gasification rate of the nonisothermal gasification E a Activation energy A Preexponential factor R S Reactivity index s 50 Time (in minute) required to reach the carbon conversion of 50 % w C Weight of carbon in the sample remaining unreacted at the time t The contributing editor for this article was Veena Sahajwalla.
The amount of plastic-containing materials, such as shredder residue material, which is generated after the processing of electronic equipment waste, is increasing. One interesting option for the sustainable management of these materials, instead of incineration or landfilling, is recycling through injection in a bath smelting process, such as zinc fuming. In this way, the plastic material could partially substitute coal as a reductant in the process. In such processes, shredder residue material is injected alongside air into the furnace at temperatures up to 1250 °C. Once the material is injected, it undergoes several conversion steps, including ignition, devolatilization, and char oxidation. In this study, the conversions of shredder residue material and other pure plastic materials were investigated using a drop tube furnace and an optical single-particle burner. The effect of particle size on the conversion time of each material was studied. The conversion time of the particles increases as the particle size increases, although the relationship is not linear. The results indicate that plastic materials with a particle size range of 1-7 mm have a considerably longer conversion time than that of coal used in the conventional processes.
In modern society, there is a fast growth in the production of electrical and electronic equipment (EEE); however, rapid growth results in the frequent discarding of this equipment. During the treatment of discarded materials, a stream is generated that contains a high fraction of plastic materials, but also metals and oxides. This stream, which is called shredder residue material (SRM), is heterogeneous, which limits its recycling options. Utilizing this material in metallurgical processes allows the plastic fraction to be used as a reductant and energy source and the metallic fraction to be recycled and returned to the production of EEE. The aim of this study was to evaluate the potential of plastic-containing materials, especially SRM, as alternative reductants in metallurgical processes. The first step was to compare the thermal conversion characteristics of plastic-containing materials to the currently used reducing agent, i.e., coal. Three main candidates, polyurethane (PUR), polyethylene (PE), and SRM, were studied using a drop tube furnace and an optical single-particle burner. PE had the highest volatile content and the fastest conversion time, whereas PUR had the longest conversion time. Thereafter, plastic materials were tested at the industrial scale through injection to the zinc fuming process at the Boliden Rönnskär smelter. During the industrial trial, the amount of coal that was injected was reduced and substituted with plastic material. The results indicate the possibility of reducing the coal injection rate in favor of partial substitution with plastic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.