The rapid development of herbicide resistance in weeds, and environmental
imperatives, have forced the consideration of non-chemical tactics such as
crop competition for weed management. This review of wheat–weed
competition examines the plant traits associated with wheat competitiveness,
and the opportunities for plant breeding or manipulating crop agronomy to
differentially favour the growth of the crop. Many studies have proven that
enhancing crop competitive ability can reduce weed seed production and crop
yield loss, although a number of difficulties in conducting this research are
identified and suggestions are made for improvement. It remains to be seen
whether crop competitiveness will be considered as a priority by farmers and
plant breeders. Farmers require precise information on the reliability of
agronomic factors such as increased crop seeding rate or choice of variety for
enhancing crop competitive ability in different environments. Plant breeders
need to know which plant traits to incorporate in varieties to increase
competitive ability. A thorough analysis of the benefits and costs of
enhancing wheat competitiveness is needed. Competitive wheat crops should be
available as part of reliable and economical integrated weed management
packages for farmers.
In this study, probiotic bacteria such as Lactobacillus acidophilus and Bifidobacterium bifidum were encapsulated in alginate beads with a mean diameter of 54.25 ± 0.18 µm by internal gelation. Encapsulated and free cells as control samples were then added to the pasteurized grape juice and stored for 60 days. At the end of the storage period, the survivability of the bacteria in the encapsulated samples was significantly ( P<0.05) higher than that in the free cells (8.67 ± 0.12 and 7.57 ± 0.08 log cfu mL−1 for L. acidophilus and 8.27 ± 0.05 and 7.53 ± 0.07 log cfu mL−1 for B. bifidum for encapsulated and free forms, respectively). The results generally showed a decrease in °Brix, pH, and color, whereas acidity and turbidity have increased the in probiotic grape juice after the storage period of 60 days. For all treatments, the numbers of surviving cells were more than the recommended minimum (107 cfu g−1) at the end of the storage period.
Fungal growth and consequent mycotoxin release in food and feed threatens human health, which might even, in acute cases, lead to death. Control and prevention of foodborne poisoning is a major task of public health that will be faced in the 21st century. Nowadays, consumers increasingly demand healthier and more natural food with minimal use of chemical preservatives, whose negative effects on human health are well known. Biopreservation is among the safest and most reliable methods for inhibiting fungi in food. Lactic acid bacteria (LAB) are of great interest as biological additives in food owing to their Generally Recognized as Safe (GRAS) classification and probiotic properties. LAB produce bioactive compounds such as reuterin, cyclic peptides, fatty acids, etc., with antifungal properties. This review highlights the great potential of LAB as biopreservatives by summarizing various reported antifungal activities/metabolites of LAB against fungal growth into foods. In the end, it provides profound insight into the possibilities and different factors to be considered in the application of LAB in different foods as well as enhancing their efficiency in biodetoxification and biopreservative activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.