Lanthanum (La) is a rare-earth metal with applications in agriculture, industry, and medicine. Since lanthanides show a broad spectrum of applications there is an increased risk of contamination for humans. We examined the effects of lanthanum in Jurkat cells and human peripheral lymphocytes (HPL), and we found that it was cytotoxic and genotoxic on both cell lines. Additionally, HPL were more sensitive to La treatment than Jurkat cells and necrosis was the pathway by which La induced cytotoxicity. Vitamin E was able to diminish the DNA strand breaks induced suggesting that oxidative stress may be involved in the genotoxic process.
Thorium, cerium, and lanthanum are metals present in several types of minerals, the most common of which is monazite. Cerium and lanthanum are elements in the lanthanides series. Thorium, an actinide metal, is a hazardous element due to its radioactive characteristics. There is a lack of information describing the possible chemical interactions among these elements and the effects they may have on humans. Toxicological analyses were performed using cell viability, cell death, and DNA damage assays. Chemical interactions were evaluated based on the Loewe additivity model. The results indicate that thorium and cerium individually have no toxic effects on lymphocytes. However, thorium associated with lanthanum increases the toxicity of this element, thereby reducing the viability of lymphocytes at low concentrations of metals in the mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.