In this paper, we present a new approach to offline OCR (optical character recognition) for printed Persian subwords using wavelet packet transform. The proposed algorithm is used to extract font invariant and size invariant features from 87804 subwords of 4 fonts and 3 sizes. The feature vectors are compressed using PCA. The obtained feature vectors yield a pictorial dictionary for which an entry is the mean of each group that consists of the same subword with 4 fonts in 3 sizes. The sets of these features are congregated by combining them with the dot features for the recognition of printed Persian subwords. To evaluate the feature extraction results, this algorithm was tested on a set of 2000 subwords in printed Persian text documents. An encouraging recognition rate of 97.9% is got at subword level recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.