In this paper we consider the problem of computing all possible order ideals and also sets connected to 1, and the corresponding border bases, for the vanishing ideal of a given finite set of points. In this context two different approaches are discussed: based on the Buchberger-Möller Algorithm [14], we first propose a new algorithm to compute all possible order ideals and the corresponding border bases for an ideal of points. The second approach involves adapting the Farr-Gao Algorithm [5] for finding all sets connected to 1, as well as the corresponding border bases, for an ideal of points. It should be noted that our algorithms are term ordering free. Therefore they can compute successfully all border bases for an ideal of points. Both proposed algorithms have been implemented and their efficiency is discussed via a set of benchmarks.Date: June 21, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.