Recent developments in indirect predictive methods have yielded promising solutions for energy consumption modeling. The present study proposes and evaluates a novel integrated methodology for estimating the annual thermal energy demand (DAN), which is considered as an indicator of the heating and cooling loads of buildings. A multilayer perceptron (MLP) neural network is optimally trained by symbiotic organism search (SOS), which is among the strongest metaheuristic algorithms. Three benchmark algorithms, namely, political optimizer (PO), harmony search algorithm (HSA), and backtracking search algorithm (BSA) are likewise applied and compared with the SOS. The results indicate that (i) utilizing the properties of the building within an artificial intelligence framework gives a suitable prediction for the DAN indicator, (ii) with nearly 1% error and 99% correlation, the suggested MLP-SOS is capable of accurately learning and reproducing the nonlinear DAN pattern, and (iii) this model outperforms other models such as MLP-PO, MLP-HSA and MLP-BSA. The discovered solution is finally expressed in an explicit mathematical format for practical uses in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.