The application of machine learning for the development of clinical decision-support systems in audiology provides the potential to improve the objectivity and precision of clinical experts' diagnostic decisions. However, for successful clinical application, such a tool needs to be accurate, as well as accepted and trusted by physicians. In the field of audiology, large amounts of patients' data are being measured, but these are distributed over local clinical databases and are heterogeneous with respect to the applied assessment tools. For the purpose of integrating across different databases, the Common Audiological Functional Parameters (CAFPAs) were recently established as abstract representations of the contained audiological information describing relevant functional aspects of the human auditory system. As an intermediate layer in a clinical decision-support system for audiology, the CAFPAs aim at maintaining interpretability to the potential users. Thus far, the CAFPAs were derived by experts from audiological measures. For designing a clinical decision-support system, in a next step the CAFPAs need to be automatically derived from available data of individual patients. Therefore, the present study aims at predicting the expert generated CAFPA labels using three different machine learning models, namely the lasso regression, elastic nets, and random forests. Furthermore, the importance of different audiological measures for the prediction of specific CAFPAs is examined and interpreted. The trained models are then used to predict CAFPAs for unlabeled data not seen by experts. Prediction of unlabeled cases is evaluated by means of model-based clustering methods. Results indicate an adequate prediction of the ten distinct CAFPAs. All models perform comparably and turn out to be suitable choices for the prediction of CAFPAs. They also generalize well to unlabeled data. Additionally, the extracted relevant features are plausible for the respective CAFPAs, facilitating interpretability of the predictions. Based on the trained models, a prototype of a clinical decision-support system in audiology can be implemented and extended towards clinical databases in the future.
For characterizing the complexity of hearing deficits, it is important to consider di erent aspects of auditory functioning in addition to the audiogram. For this purpose, extensive test batteries have been developed aiming to cover all relevant aspects as defined by experts or model assumptions. However, as the assessment time of physicians is limited, such test batteries are often not used in clinical practice. Instead, fewer measures are used, which vary across clinics. This study aimed at proposing a flexible data-driven approach for characterizing distinct patient groups (patient stratification into auditory profiles) based on one prototypical database (N =) containing audiogram data, loudness scaling, speech tests, and anamnesis questions. To further maintain the applicability of the auditory profiles in clinical routine, we built random forest classification models based on a reduced set of audiological measures which are often available in clinics. Di erent parameterizations regarding binarization strategy, cross-validation procedure, and evaluation metric were compared to determine the optimum classification model. Our data-driven approach, involving model-based clustering, resulted in a set of patient groups, which serve as auditory profiles. The auditory profiles separate patients within certain ranges across audiological measures and are audiologically plausible. Both a normal hearing profile and profiles with varying extents of hearing impairments are defined. Further, a random forest classification model with a combination of a one-vs.-all and one-vs.-one binarization strategy, -fold cross-validation, and the kappa evaluation metric was determined as the optimal model. With the selected model, patients can be classified into of the auditory profiles with adequate precision (mean across profiles = . ) and sensitivity (mean across profiles = . ). The proposed approach, consequently, allows generating of audiologically plausible and interpretable, data-driven clinical auditory profiles, providing an e cient way of characterizing hearing deficits, while maintaining clinical applicability. The method should by design be applicable to all audiological data sets from clinics or research, and in addition be flexible to summarize Frontiers in Neurology frontiersin.org Saak et al. . /fneur. .information across databases by means of profiles, as well as to expand the approach toward aided measurements, fitting parameters, and further information from databases.
For supporting clinical decision-making in audiology, Common Audiological Functional Parameters (CAFPAs) were suggested as an interpretable intermediate representation of audiological information taken from various diagnostic sources within a clinical decision-support system (CDSS). Ten different CAFPAs were proposed to represent specific functional aspects of the human auditory system, namely hearing threshold, supra-threshold deficits, binaural hearing, neural processing, cognitive abilities, and a socio-economic component. CAFPAs were established as a viable basis for deriving audiological findings and treatment recommendations, and it has been demonstrated that model-predicted CAFPAs, with machine learning models trained on expert-labeled patient cases, are sufficiently accurate to be included in a CDSS, but it requires further validation by experts. The present study aimed to validate model-predicted CAFPAs based on previously unlabeled cases from the same data set. Here, we ask to which extent domain experts agree with the model-predicted CAFPAs and whether potential disagreement can be understood in terms of patient characteristics. To these aims, an expert survey was designed and applied to two highly-experienced audiology specialists. They were asked to evaluate model-predicted CAFPAs and estimate audiological findings of the given audiological information about the patients that they were presented with simultaneously. The results revealed strong relative agreement between the two experts and importantly between experts and the prediction for all CAFPAs, except for the neural processing and binaural hearing-related ones. It turned out, however, that experts tend to score CAFPAs in a larger value range, but, on average, across patients with smaller scores as compared with the machine learning models. For the hearing threshold-associated CAFPA in frequencies smaller than 0.75 kHz and the cognitive CAFPA, not only the relative agreement but also the absolute agreement between machine and experts was very high. For those CAFPAs with an average difference between the model- and expert-estimated values, patient characteristics were predictive of the disagreement. The findings are discussed in terms of how they can help toward further improvement of model-predicted CAFPAs to be incorporated in a CDSS for audiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.