<abstract> <p>Starting February 2020, COVID-19 was confirmed in 11,946 people worldwide, with a mortality rate of almost 2%. A significant number of epidemic diseases consisting of human Coronavirus display patterns. In this study, with the benefit of data analytic, we develop regression models and a Susceptible-Infected-Recovered (SIR) model for the contagion to compare the performance of models to predict the number of cases. First, we implement a good understanding of data and perform Exploratory Data Analysis (EDA). Then, we derive parameters of the model from the available data corresponding to the top 4 regions based on the history of infections and the most infected people as of the end of August 2020. Then models are compared, and we recommend further research.</p> </abstract>
Breast meat from modern fast-growing big birds is affected with myopathies such as woody breast (WB), white striping, and spaghetti meat (SM). The detection and separation of the myopathy-affected meat can be carried out at processing plants using technologies such as bioelectrical impedance analysis (BIA). However, BIA raw data from myopathy-affected breast meat are extremely complicated, especially because of the overlap of these myopathies in individual breast fillets and the human error associated with the assignment of fillet categories. Previous research has shown that traditional statistical techniques such as ANOVA and regression, among others, are insufficient in categorising fillets affected with myopathies by BIA. Therefore, more complex data analysis tools can be used, such as support vector machines (SVMs) and backpropagation neural networks (BPNNs), to classify raw poultry breast myopathies using their BIA patterns, such that the technology can be beneficial for the poultry industry in detecting myopathies. Freshly deboned (3–3.5 h post slaughter) breast fillets (n = 100 × 3 flocks) were analysed by hand palpation for WB (0-normal; 1-mild; 2-moderate; 3-Severe) and SM (presence and absence) categorisation. BIA data (resistance and reactance) were collected on each breast fillet; the algorithm of the equipment calculated protein and fat index. The data were analysed by linear discriminant analysis (LDA), and with SVM and BPNN with 70::30: training::test data set. Compared with the LDA analysis, SVM separated WB with a higher accuracy of 71.04% for normal (data for normal and mild merged), 59.99% for moderate, and 81.48% for severe WB. Compared with SVM, the BPNN training model accurately (100%) separated normal WB fillets with and without SM, demonstrating the ability of BIA to detect SM. Supervised learning algorithms, such as SVM and BPNN, can be combined with BIA and successfully implemented in poultry processing to detect breast fillet myopathies.
COVID-19 has surged in the United States since January 2020. Since then, social distancing and lockdown have helped many people to avoid infectious diseases. However, this did not help the upswing of the number of cases after the lockdown was finished. Modeling the infectious disease can help the health care providers and governors to plan ahead for obtain the needed resources. In this manner, precise short-term determining of the number of cases can be imperative to the healthcare system. Many models have been used since the pandemic has started. In this paper we will compare couple of time series models like Simple Moving Average, Exponentially Weighted Moving Average, Holt-Winters Double Exponential Smoothing Additive, ARIMA, and SARIMA. Two models that have been used to predict the number of cases are ARIMA and SARIMA. A grid search has been implemented to select the best combination of the parameters for both models. Results show that in the case of modeling, the Holt-Winters Double Exponential model outperforms Exponentially Weighted Moving Average and Simple Moving Average while forecasting ARIMA outperforms SARIMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.