Background While human mesenchymal stem cells (hMSCs) have been tested in ischemic cardiomyopathy, few studies exist in chronic non-ischemic dilated cardiomyopathy (NIDCM). Objectives The POSEIDON-DCM trial is a randomized comparison of safety and efficacy of autologous (auto) vs. allogeneic (allo) bone marrow-derived hMSCs in NIDCM. Methods Thirty-seven patients were randomized to either allo- or auto-hMSCs in a 1:1 ratio. Patients were recruited between December 2011 and July 2015 at the University of Miami Hospital. Patients (age: 55.8 ± 11.2; 32% female) received hMSCs (100 million) by transendocardial stem cell injection (TESI) in ten left ventricular sites by NOGA Catheter. Treated patients were evaluated at baseline, 30 days, 3-, 6-, and 12-months for safety: serious adverse events (SAE), and efficacy endpoints: Ejection Fraction (EF), Minnesota Living with Heart Failure Questionnaire (MLHFQ), Six Minute Walk Test (6MWT), MACE, and immune-biomarkers. This trial is registered with ClinicalTrials.gov, #NCT01392625. Results There were no 30-day treatment-emergent (TE)-SAEs. 12-month SAE incidence was 28.2% (95% CI: 12.8, 55.1) in allo, and 63.5% (95% CI: 40.8, 85.7; p=0.1004) in auto. One allo-group patient developed an elevated donor specific cPRA. EF increased in allo by 8.0 units (95% Cl: 2.8, 13.2; p=0.004), and in auto: 5.4 units (95% Cl: −1.4, 12.1; p=0.116, allo vs. auto p=0.4887). 6MWT increased for allo: 37.0 meters (95% Cl: 2.0 to 72.0; p=0.04), but not auto: 7.3 meters (95% Cl: −47.8, 33.3; p=0.71, auto vs. allo p=0.0168). MLHFQ score decreased in allo (p=0.0022), and auto (p=0.463; p=0.172). The MACE rate was lower in allo vs. auto (p=0.0186). Tumor necrosis factor alpha (TNF-α) decreased (p=0.0001 for each), to a greater extent in allo vs. auto at six-months (p=0.05). Conclusion These findings demonstrate safety and support greater, clinically meaningful efficacy of allo-hMSC vs. auto-hMSC in NIDCM patients. Pivotal trials of allo-hMSCs are warranted based on these results.
BACKGROUND Both bone marrow-derived mesenchymal stem cells (MSCs) and c-kit+ cardiac stem cells (CSCs) improve left ventricular remodeling in porcine models and clinical trials. We previously showed, using xenogeneic (human) cells in immunosuppressed animals with acute ischemic heart disease, that these 2 cell types act synergistically in combination. OBJECTIVES To more accurately model the clinical situation, we tested whether the combination of autologous MSCs and CSCs produced greater improvement of cardiac performance than MSCs alone in a nonimmunosuppressed porcine model of chronic ischemic cardiomyopathy. METHODS Three months after ischemia/reperfusion infusion injury, Gottingen mini-swine were injected transendocardially with MSCs alone (n = 6) or in combination with cardiac-derived CSCs (n = 8), MSCs, or placebo (vehicle; n = 6). Cardiac functional and anatomic parameters were assessed by cardiac magnetic resonance at baseline and before and after therapy. RESULTS Both groups of cell-treated animals exhibited significantly reduced scar size (MSCs: −44.1 ± 6.8%; CSC/MSC: −37.2 ± 5.4%; placebo: −12 ± 4.2%; p < 0.0001), increased viable tissue, and improved wall motion relative to placebo 3 months post-injection. Ejection fraction (EF) improved (MSCs: +2.9 ± 1.6; CSC/MSC: +6.9 ± 2.8; placebo: +2.5 ± 1.6 EF units; p = 0.0009), as did stroke volume, cardiac output, and diastolic strain, but only in the combination-treated animals, which also exhibited increased cardiomyocyte mitotic activity. CONCLUSIONS These findings illustrate that interactions between MSCs and CSCs enhance cardiac performance more than MSCs alone, establish the safety of autologous cell combination strategies, and support the development of second-generation cell therapeutic products.
Although nitric oxide (NO) signaling promotes differentiation and maturation of endothelial progenitor cells, its role in the differentiation of mesenchymal stem cells (MSCs) into endothelial cells remains controversial. We tested the role of NO signaling in MSCs derived from WT mice and mice homozygous for a deletion of S -nitrosoglutathione reductase (GSNOR −/− ), a denitrosylase that regulates S -nitrosylation. GSNOR −/− MSCs exhibited markedly diminished capacity for vasculogenesis in an in vitro Matrigel tube–forming assay and in vivo relative to WT MSCs. This decrease was associated with down-regulation of the PDGF receptorα (PDGFRα) in GSNOR −/− MSCs, a receptor essential for VEGF-A action in MSCs. Pharmacologic inhibition of NO synthase with L-N G -nitroarginine methyl ester ( L -NAME) and stimulation of growth hormone–releasing hormone receptor (GHRHR) with GHRH agonists augmented VEGF-A production and normalized tube formation in GSNOR −/− MSCs, whereas NO donors or PDGFR antagonist reduced tube formation ∼50% by murine and human MSCs. The antagonist also blocked the rescue of tube formation in GSNOR −/− MSCs by L -NAME or the GHRH agonists JI-38, MR-409, and MR-356. Therefore, GSNOR −/− MSCs have a deficient capacity for endothelial differentiation due to downregulation of PDGFRα related to NO/GSNOR imbalance. These findings unravel important aspects of modulation of MSCs by VEGF-A activation of the PDGFR and illustrate a paradoxical inhibitory role of S -nitrosylation signaling in MSC vasculogenesis. Accordingly, disease states characterized by NO deficiency may trigger MSC-mediated vasculogenesis. These findings have important implications for therapeutic application of GHRH agonists to ischemic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.