In this paper we have extended the notion of statistical limit point as introduced by Fridy[8] to I-statistical limit point of sequences of real numbers and studied some basic properties of the set of all I-statistical limit points and I-statistical cluster points of real sequences.
We introduce the notions of strongly $\lambda$-statistically pre-Cauchy and strongly Vall´ee-Poussin pre-Cauchy sequences in probabilistic metric spaces endowed with strong topology. And we show that these two new notions are equivalent. Strongly $\lambda$-statistically convergent sequences are strongly $\lambda$-statistically pre-Cauchy sequences, and we give an example to show that there is a sequence in a probabilistic metric space which is strongly $\lambda$-statistically pre-Cauchy but not strongly $\lambda$-statistically convergent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.