Background: Hormone receptor-positive and HER2-negative breast cancer (HR + BC) is the most prevalent breast cancer. Endocrine therapy is the mainstay of treatment, however, due to the heterogeneous nature of the disease, resistance to endocrine therapy is not uncommon. Over the past decades, the emergence of novel targeted therapy in combination with endocrine therapy has shown improvement in outcomes of HR + BC. This paper reviews available data of targeted therapy and the results of pivotal clinical trials in the management of HR + BC. Methods: A literature search in PubMed and Google Scholar was performed using keywords related to HR + BC and targeted therapy. Major relevant studies that were presented in international cancer research conferences were also included. Results: Endocrine therapy with tamoxifen and aromatase inhibitors are backbone treatments for women with early-stage HR + BC leading to a significant reduction in mortality. They can also be used for primary prevention in women with a high risk of breast cancer. Preliminary data has shown the efficacy of adjuvant cyclin-dependent kinase (CDK) 4/6 inhibitor, abemaciclib, in high-risk disease in combination with aromatase inhibitors. For most women with advanced HR + BC, endocrine therapy is the primary treatment. Recent evidence has shown that the use of CKD 4/6 inhibitors, mTOR inhibitors, and PI3K inhibitors in combination with endocrine therapy has been associated with better outcomes and delays initiation of chemotherapy. Several novel agents are under study for HR + BC. Discussion: Targeted treatment options for HR + BC have evolved. The future of overcoming resistance to targeted therapy, novel compounds, and predictive markers are key to improving HR + BC outcomes.
Etiological and genetic drivers of osteosarcoma (OS) are not well studied and vary from one tumor to another; making it challenging to pursue conventional targeted therapy. Recent studies have shown that cation independent mannose-6-phosphate/insulin-like growth factor-2 receptor (IGF2R) is consistently overexpressed in almost all of standard and patient-derived OS cell lines, making it an ideal therapeutic target for development of antibody-based drugs. Monoclonal antibodies, targeting IGF2R, can be conjugated with alpha- or beta-emitter radionuclides to deliver cytocidal doses of radiation to target IGF2R expression in OS. This approach known as radioimmunotherapy (RIT) can therefore be developed as a novel treatment for OS. In addition, OS is one of the common cancers in companion dogs and very closely resembles human OS in clinical presentation and molecular aberrations. In this study, we have developed human antibodies that cross-react with similar affinities to IGF2R proteins of human, canine and murine origin. We used naïve and synthetic antibody Fab-format phage display libraries to develop antibodies to a conserved region on IGF2R. The generated antibodies were radiolabeled and characterized in vitro and in vivo using human and canine OS patient-derived tumors in SCID mouse models. We demonstrate specific binding to IGF2R and tumor uptake in these models, as well as binding to tumor tissue of canine OS patients, making these antibodies suitable for further development of RIT for OS
Antibodies that recognize cancer biomarkers, such as MUC16, can be used as vehicles to deliver contrast agents (imaging) or cytotoxic payloads (therapy) to the site of tumors. MUC16 is overexpressed in 80% of epithelial ovarian cancer (EOC) and 65% of pancreatic ductal adenocarcinomas (PDAC), where effective ‘theranostic’ probes are much needed. This work aims to develop fully human antibodies against MUC16 and evaluate them as potential immuno-PET imaging probes for detecting ovarian and pancreatic cancers. We developed a fully human monoclonal antibody, M16Ab, against MUC16 using phage display. M16Ab was conjugated with p-SCN-Bn-DFO and radiolabeled with 89Zr. 89Zr-DFO-M16Ab was then evaluated for binding specificity and affinity using flow cytometry. In vivo evaluation of 89Zr-DFO-M16Ab was performed by microPET/CT imaging at different time points at 24–120 h post injection (p.i.) and ex vivo biodistribution studies in mice bearing MUC16-expressing OVCAR3, SKOV3 (ovarian) and SW1990 (pancreatic) xenografts. 89Zr-DFO-M16Ab bound specifically to MUC16-expressing cancer cells with an EC50 of 10nM. 89Zr-DFO-M16Ab was stable in serum and showed specific uptake and retention in tumor xenografts even after 120 h p.i. (microPET/CT) with tumor-to-blood ratios > 43 for the SW1990 xenograft. Specific tumor uptake was observed for SW1990/OVCAR3 xenografts but not in MUC16-negative SKOV3 xenografts. Pharmacokinetic study shows a relatively short distribution (t1/2α) and elimination half-life (t1/2ß) of 4.4 h and 99 h, respectively. In summary, 89Zr-DFO-M16Ab is an effective non-invasive imaging probe for ovarian and pancreatic cancers and shows promise for further development of theranostic radiopharmaceuticals.
Introduction: Fulvestrant has demonstrated efficacy in hormone receptor positive (HR+) metastatic breast cancer (mBC), both in first-and second-line settings. In clinical practice, however, fulvestrant has been used as a later-line therapy. This study assessed the efficacy of fulvestrant in women with mBC in early-versus later-line therapy. Methods: This retrospective cohort study assessed Saskatchewan women with HR+ mBC who received fulvestrant between 2003–2019. A multivariate Cox proportional survival analysis was performed. Results: One hundred and eighty-six women with a median age of 63.5 years were identified—178 (95.6%) had hormone-resistant mBC, 57.5% had visceral disease, and 43.0% had received chemotherapy before fulvestrant. 102 (54.8%) women received ≤2-line-therapy, and 84 (45.2%) received ≥3 line-therapy before fulvestrant. The median time to progression (TTP) was 12 months in the early-treatment vs. 6 months in the later-treatment group, p = 0.015. Overall survival (OS) from the start of fulvestrant was 26 months in the early-treatment group vs. 16 months in the later-treatment group, p = 0.067. On multivariate analysis, absence of visceral metastasis, HR: 0.70 (0.50–0.99), was significantly correlated with better TTP, whereas post-fulvestrant chemotherapy, HR: 0.32 (0.23–0.47), clinical benefit from fulvestrant, HR: 0.44 (0.30–0.65), and absence of visceral metastasis, HR: 0.70 (0.50–0.97), were correlated with better OS. Conclusions: Fulvestrant has demonstrated efficacy as both early-and later-line therapy in hormone-resistant mBC. Our results show that women with clinical benefit from fulvestrant, who received post-fulvestrant chemotherapy, or had non-visceral disease, had better survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.