The bandwidth upgrade required in short-reach optical communications has prompted the need for detection schemes that combine field reconstruction with a cost-effective subsystem architecture. Here we propose an asymmetric self-coherent detection (ASCD) scheme for the field reconstruction of self-coherent (SC) complex double-sideband (DSB) signals based on a direct-detection (DD) receiver with two reception paths. Each reception path consists of a photodiode (PD) and an analog-to-digital converter for the detection of a part of the received optical signal that experiences a different optical transfer function via the configuration of an optical filter. We derive an analytical solution to reconstructing the signal field and show the optimal filter response in optimizing the signal SNR. Further, we numerically characterize the theoretical performance of a specific ASCD scheme based on a chromatic dispersion filter and validate the principle of the ASCD scheme in a proof-of-concept experiment. The ASCD scheme approaches the electrical spectral efficiency of coherent detection with a cost-effective DD receiver, which shows the potential for high-speed short-reach links required by edge cloud communications and mobile X-haul systems.
We present the design and characterization of Oband and C-band silicon photonic (SiP) traveling wave Mach-Zehnder modulators (TW-MZM) allowing 220 Gbps/λ net rate operation. The designed modulators show over 45 GHz 3-dB E-O bandwidth with a single-segment design. In the O-band, with simple linear feed forward equalization, we transmit net 203 (200) Gbps signal over 2 km (10 km) of single-mode fiber (SMF) below the hard-decision forward error correction (HD-FEC) BER threshold of 3.8×10 -3 . With the aid of nonlinear Volterra equalizer and one 2.3Vpp driving signal, we transmit net 225 (216) Gbps PAM8 signals assuming 20% overhead soft-decision FEC with a normalized general mutual information (NGMI) threshold of 0.8798 over 2 km (10 km) of SMF. The C-band design enables net 220 Gbps in B2B and net 215 Gbps over 500 m of SMF above the specified NGMI threshold. These results are the highest reported net rate for SiP MZM in an intensity modulation direct-detection (IM/DD) system, fabricated entirely in a commercial foundry. Index Terms-Intensity modulation, electrooptic modulators, optical interconnections, Volterra equalization.3, which is the highest reported rate for a Si MRM. In [12], 200 Gbps PAM6 (net 167 Gbps) signal transmission over 1 km of SMF was achieved at a BER below the 20% HD-FEC threshold of 1.5×10 -2 using a SiP TW-MZM with a 3-dB EO bandwidth
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.