Silver gallium di-selenide (AgGaSe2) composite thin films have been formed onto ultrasonically and chemically cleaned glass substrates by in situ thermal annealing of the stack of successively evaporated individual elemental layers in vacuum. The structural properties of the films were ascertained by the x-ray diffraction method. The diffractogram indicated that these films were polycrystalline in nature having tetragonal structure with lattice parameters, a ≈ 6.00 Å and c ≈ 10.92 Å and average grain dimension 40 nm. The optical properties and atomic compositions of the films have been determined by UV-VIS-NIR spectrophotometry (photon wavelength ranging between 300 and 2500 nm) and energy dispersive analysis of x-ray, respectively. The typical optical absorption characteristic of the films has been critically analysed. The optical absorption coefficients vary from 103 to 105 cm−1 in the measured wavelength range of photons. The films have more than one type of fundamental electronic transitions. Direct allowed and direct forbidden transitions vary from 1.628 to 1.748 eV and 2.077 to 2.193 eV, respectively, depending on the composition of the films. The former transitions are found to have a general tendency to be symmetric around non-molecularity ΔX = 0, defined by ΔX = [(Ag/Ga)] − 1, while the latter shows no such dependence. Stoichiometric or slightly silver-deficient films show electron transition energies closer to the single crystal value. Spin–orbit splitting of the valence band becomes minimum at perfect stoichiometry.
FeO nanoparticle functionalized CHX spheres demonstrated a magnetic field responsive property. A magnetic field responsive release of CHX may be useful in clinical situations where the drug can be directed to give a tailored release at the site of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.