The K-nearest neighbors (KNN) machine learning algorithm is a well-known non-parametric classification method. However, like other traditional data mining methods, applying it on big data comes with computational challenges. Indeed, KNN determines the class of a new sample based on the class of its nearest neighbors; however, identifying the neighbors in a large amount of data imposes a large computational cost so that it is no longer applicable by a single computing machine. One of the proposed techniques to make classification methods applicable on large datasets is pruning. LC-KNN is an improved KNN method which first clusters the data into some smaller partitions using the K-means clustering method; and then applies the KNN for each new sample on the partition which its center is the nearest one. However, because the clusters have different shapes and densities, selection of the appropriate cluster is a challenge. In this paper, an approach has been proposed to improve the pruning phase of the LC-KNN method by taking into account these factors. The proposed approach helps to choose a more appropriate cluster of data for looking for the neighbors, thus, increasing the classification accuracy. The performance of the proposed approach is evaluated on different real datasets. The experimental results show the effectiveness of the proposed approach and its higher classification accuracy and lower time cost in comparison to other recent relevant methods.
Abstract:Crime prevention has been one of the most fundamental issues in our society that has historically been implemented in various ways. Along with the development of information and communication technologies, the aim is to launch a comprehensive system of information storage of criminals in police records. Through the use of data mining and knowledge discovery techniques, one can analyses the roots tracing offenses, including theft for Iranian Police for legal purposes.
Myocardial infarction (MI) results in heart muscle injury due to receiving insufficient blood flow. MI is the most common cause of mortality in middle-aged and elderly individuals worldwide. To diagnose MI, clinicians need to interpret electrocardiography (ECG) signals, which requires expertise and is subject to observer bias. Artificial intelligence-based methods can be utilized to screen for or diagnose MI automatically using ECG signals. In this work, we conducted a comprehensive assessment of artificial intelligence-based approaches for MI detection based on ECG and some other biophysical signals, including machine learning (ML) and deep learning (DL) models. The performance of traditional ML methods relies on handcrafted features and manual selection of ECG signals, whereas DL models can automate these tasks. The review observed that deep convolutional neural networks (DCNNs) yielded excellent classification performance for MI diagnosis, which explains why they have become prevalent in recent years. To our knowledge, this is the first comprehensive survey of artificial intelligence techniques employed for MI diagnosis using ECG and some other biophysical signals.
Agile methods promise to achieve high productivity and provide high-quality software. Agile software development is the most important approach that has spread through the world of software development over the past decade. the Software team's productivity measurement is essential in agile teams to increase the performance of Software development. Due to the increasing competition of software development companies, software team productivity has become one of the crucial challenges for software companies and teams. Awareness of the level of team productivity can help them to achieve better estimation results on the time and cost of the projects. However, to measure software productivity, there is no definitive solution or approach whether in traditional and agile software development teams that lead to the occurrence of many problems in achieving a reliable definition of software productivity. Hence, this study aims to propose a statistical model to assess the team's productivity in agile teams. A survey was conducted with forty software companies and measured the impact of six factors of the team on productivity in these companies. The results show that team effectiveness factors including inter-team relationship, quality conformance by the team, team vision, team leader, and requirements handled by the team had a significant impact on team productivity. Moreover, the results also state that inter-team relations affect the most on software team's productivity. Finally, the model fit test showed that 80% of productivity depends on team effectiveness factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.