G protein-coupled receptors (GPCRs) are involved in a wide variety of physiological processes. Therefore, approximately 40% of currently prescribed drugs have targeted this receptor family. Discovery of β -arrestin mediated signaling and also separability of G protein and β -arrestin signaling pathways have switched the research focus in the GPCR field towards development of biased ligands, which provide engagement of the receptor with a certain effector, thus enriching a specific signaling pathway. In this review, we summarize possible factors that impact signaling profiles of GPCRs such as oligomerization, drug treatment, disease conditions, genetic background, etc. along with relevant molecules that can be used to modulate signaling properties of GPCRs such as allosteric or bitopic ligands, ions, aptamers and pepducins. Moreover, we also discuss the importance of inclusion of pharmacogenomics and molecular dynamics simulations to achieve a holistic understanding of the relation between genetic background and structure and function of GPCRs and GPCR-related proteins. Consequently, specific downstream signaling pathways can be enriched while those that bring unwanted side effects can be prevented on a patient-specific basis. This will improve studies that centered on development of safer and personalized therapeutics, thus alleviating the burden on economy and public health.
Hexokinase (HK) catalyzes the first step in glucose metabolism, making it an exciting target for the inhibition of tumor initiation and progression due to their elevated glucose metabolism. The upregulation of hexokinase-2 (HK2) in many cancers and its limited expression in normal tissues makes it a particularly attractive target for the selective inhibition of cancer growth and the eradication of tumors with limited side effects. The design of such safe and effective anticancer therapeutics requires the development of HK2-specific inhibitors that will not interfere with other HK isozymes. As HK2 is unique among HKs in having a catalytically active N-terminal domain (NTD), we have focused our attention on this region. We previously found that NTD activity is affected by the size of the linker helix-α13 that connects the N- and C-terminal domains of HK2. Three non-active site residues (D447, S449, and K451) at the beginning of the linker helix-α13 have been found to regulate the NTD activity of HK2. Mutation of these residues led to increased dynamics, as shown via hydrogen-deuterium exchange analysis and molecular dynamic simulations. D447A contributed the most to the enhanced dynamics of the NTD, with reduced calorimetric enthalpy of HK2. Similar residues exist in the C-terminal domain (CTD) but are unnecessary for HK1 and HK2 activity. Thus, we postulate these residues serve as a regulatory site for HK2, and may provide new directions for the design of anticancer therapeutics that reduce the rate of glycolysis in cancer through specific inhibition of HK2.
Celiac disease (CD) is a chronic and systemic autoimmune disorder that affects preferentially the small intestine of individuals with a genetic predisposition. CD is promoted by the ingestion of gluten, a storage protein contained in the endosperm of the seeds of wheat, barley, rye, and related cereals. Once in the gastrointestinal (GI) tract, gluten is enzymatically digested with the consequent release of immunomodulatory and cytotoxic peptides, i.e., 33mer and p31-43. In the late 1970s a new group of biologically active peptides, called gluten exorphins (GEs), was discovered and characterized. In particular, these short peptides showed a morphine-like activity and high affinity for the δ-opioid receptor (DOR). The relevance of GEs in the pathogenesis of CD is still unknown. Recently, it has been proposed that GEs could contribute to asymptomatic CD, which is characterized by the absence of symptoms that are typical of this disorder. In the present work, GEs cellular and molecular effects were in vitro investigated in SUP-T1 and Caco-2 cells, also comparing viability effects with human normal primary lymphocytes. As a result, GEs treatments increased tumor cell proliferation by cell cycle and Cyclins activation as well as by induction of mitogenic and pro-survival pathways. Finally, a computational model of GEs interaction with DOR is provided. Altogether, the results might suggest a possible role of GEs in CD pathogenesis and on its associated cancer comorbidities.
Deregulation of glycolysis is common in non-small cell lung cancer (NSCLC). Hexokinase (HK) enzymes catalyze the phosphoryl-group-transfer in glucose metabolism. There are a very few studies that have begun to reveal the connections between glucose metabolism and splicing programs. Unlike HK2 gene, which is expressed as a single transcript, there are several transcripts of the HK1 gene due to alternative splicing. However, the functional differential roles of HK1 isoforms in glucose metabolism and tumor progression are still elusive. Here, we show that primary NSCLC patient tumor cells metabolically differ from the normal lung epithelium where they display predominant expression of one of the HK1 transcripts, hexokinase1b (HK1b). We utilized CRISPR-Cas9 system to selectively target specific HK1b isoform in NSCLC and show that silencing HK1b in NSCLC cells inhibits tumorigenesis through diminishing glycolysis and proliferation. Our findings constitute the first demonstration of the first biochemical distinction between the HK1 splice variants. Finally, HK1b deletion sensitizes NSCLC cells to standard-of-care, cisplatin treatment, and the combination therapy synergistically increases both apoptotic cell death by cisplatin and autophagic cell death by increased formation of LC3-II associated autophagic vesicles and myelinoid bodies. Notably, loss of HK1b leads to cellular DNA damage, further combination with cisplatin therapy showed significantly increased levels of DNA damage. Importantly, we showed that glycolysis and cisplatin resistance can be restored by adding-back HK1b in HK1b knock-out cells. Our findings reveal that targeting HK1b isoform alone or in combination with cisplatin may represent a novel strategy for NSCLC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.