Water cluster formation and methane adsorption within a hydrophobic porous metal organic framework is studied by in situ vibrational spectroscopy, adsorption isotherms, and first-principle DFT calculations (using vdW-DF). Specifically, the formation and stability of H2O clusters in the hydrophobic cavities of a fluorinated metal-organic framework (FMOF-1) is examined. Although the isotherms of water show no measurable uptake (see Yang et al. J. Am. Chem. Soc. 2011 , 133 , 18094 ), the large dipole of the water internal modes makes it possible to detect low water concentrations using IR spectroscopy in pores in the vicinity of the surface of the solid framework. The results indicate that, even in the low pressure regime (100 mTorr to 3 Torr), water molecules preferentially occupy the large cavities, in which hydrogen bonding and wall hydrophobicity foster water cluster formation. We identify the formation of pentameric water clusters at pressures lower than 3 Torr and larger clusters beyond that pressure. The binding energy of the water species to the walls is negligible, as suggested by DFT computational findings and corroborated by IR absorption data. Consequently, intermolecular hydrogen bonding dominates, enhancing water cluster stability as the size of the cluster increases. The formation of water clusters with negligible perturbation from the host may allow a quantitative comparison with experimental environmental studies on larger clusters that are in low concentrations in the atmosphere. The stability of the water clusters was studied as a function of pressure reduction and in the presence of methane gas. Methane adsorption isotherms for activated FMOF-1 attained volumetric adsorption capacities ranging from 67 V(STP)/V at 288 K and 31 bar to 133 V(STP)/V at 173 K and 5 bar, with an isosteric heat of adsorption of ca. 14 kJ/mol in the high temperature range (288-318 K). Overall, the experimental and computational data suggest high preferential uptake for methane gas relative to water vapor within FMOF-1 pores with ease of desorption and high framework stability under operative temperature and moisture conditions.
Density functional theory (DFT) has been used to assess the π-acidity and π-basicity of metalorganic trimetallic macromolecular complexes of the type [M(µ-L)]3, where M ) Cu, Ag, or Au and L ) carbeniate, imidazolate, pyridiniate, pyrazolate, or triazolate. The organic compounds benzene, triazole, imidazole, pyrazole, and pyridine were also modeled, and their substituent effects were compared to those of the coinage metal trimers. Our results, based on molecular electrostatic potential surfaces and positive charge attraction energy curves, indicate that the metal-organic macromolecules show superior π-acidity and -basicity compared to their organic counterparts. Moreover, the metal-organic cyclic trimers are found to exhibit π-acidity and -basicity that can be systematically tuned both coarsely and finely by judicious variation of the bridging ligand (relative π-basicity imidazolate > pyridiniate > carbeniate > pyrazolate > triazolate), metal (relative π-basicity Au > Cu > Ag), and ligand substituents. These computational findings are thus guiding experimental efforts to rationally design novel [M(µ-L)] 3 materials for applications in molecular electronic devices that include metal-organic field-effect transistors and light-emitting diodes.
The performance of 44 density functionals used in conjunction with the correlation consistent basis sets (cc-pVnZ where n = T and Q) has been assessed for the gas-phase enthalpies of formation at 298.15 K of 3d transition metal (TM) containing systems. Nineteen molecules were examined: ScS, VO, VO(2), Cr(CO)(6), MnS, MnCl(2), Mn(CO)(5)Cl, FeCl(3), Fe(CO)(5), CoH(CO)(4), NiCl(2), Ni(CO)(4), CuH, CuF, CuCl, ZnH, ZnO, ZnCl, and Zn(CH(3))(2). Of the functionals examined, the functionals that resulted in the smallest mean absolute deviation (MAD, in parentheses, kcal mol(-1)) from experiment were B97-1 (6.9), PBE1KCIS (8.1), TPSS1KCIS (9.6), B97-2 (9.7), and B98 (10.7). All five of these functionals include some degree of Hartree-Fock (HF) exchange. The impact of increasing the basis set from cc-pVTZ to cc-pVQZ was found to be slight for the generalized gradient approximation (GGA) and meta-GGA (MGGA) functionals studied, indicating basis set saturation at the triple-zeta level. By contrast, for most of the generalized gradient exchange (GGE), hybrid GGA (HGGA), and hybrid meta-GGA (HMGGA) functionals considered, improvements in the average MAD of 2-3 kcal mol(-1) were seen upon progressing to a quadruple-zeta level basis set. Overall, it was found that the functionals that include Hartree-Fock exchange performed best overall, but those with greater than 40% HF exchange exhibit significantly poor performance for the prediction of enthalpies of formation for 3d TM complexes. Carbonyl-containing complexes, a mainstay in organometallic TM chemistry, are demonstrated to be exceedingly difficult to describe accurately with all but 2 of the 44 functionals considered. The most accurate functional, for both CO-containing and CO-free compounds, is B97-1/cc-pVQZ, which is shown to be capable of yielding results within 1 kcal mol(-1) of high-level ab initio composite methodologies.
A comparative study on the tendency of a new trinuclear silver(I) pyrazolate, namely, [N,N-(3,5-dinitropyrazolate)Ag]3 (1), and a similar compound known previously, [N,N-[3,5-bis(trifluoromethyl)pyrazolate]Ag]3 (2), to adsorb small volatile molecules was performed. It was found that 1 has a remarkable tendency to form adducts, at room temperature and atmospheric pressure, with acetone, acetylacetone, ammonia, pyridine, acetonitrile, triethylamine, dimethyl sulfide, and tetrahydrothiophene, while carbon monoxide, tetrahydrofuran, alcohols, and diethyl ether were not adsorbed. On the contrary, 2 did not undergo adsorption of any of the aforementioned volatile molecules. Adducts of 1 were characterized by elemental analysis, IR, thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) surface area, and diffusion NMR measurements. The crystal structures of 1·2CH3CN and compound 3, derived from an attempt to crystallize the adduct of 1 with ammonia, were determined by single-crystal X-ray diffractometric studies. The former shows a sandwich structure with a 1:2 stoichiometric [Ag3]/[CH3CN] ratio in which one acetonitrile molecule points above and the other below the centroid of the Ag3N6 metallocycle. Compound 3 formed via rearrangement of the ammonia adduct to yield an anionic trinuclear silver(I) derivative with an additional bridging 3,5-dinitropyrazolate and having [Ag(NH3)2](+) as the counterion, [Ag(NH3)2][N,N-(3,5-dinitropyrazolate)4Ag3]. Irreversible sorption and/or decomposition upon vapor exposure are desirable advantages toward toxic gas filtration applications, including ammonia inhalation. TGA confirms the analytical data for all of the samples, showing weight loss for each adsorbed molecule at temperatures significantly higher than the corresponding boiling temperature, which suggests a chemical-bonding nature for adsorption as opposed to physisorption. BET surface measurements of the "naked" compound 1 excluded physical adsorption in its porous cavities. Density functional theory simulation results are also consistent with the chemisorption model, explain the experimental adsorption selectivity for 1, and attribute the lack of similar adsorption by 2 to significantly less polarizable electrostatic potential and also to strong argentophilic bonding whose energy is even higher than the quadrupole-dipole adduct bond energy upon proper selection of the density functional.
In a previous report we showed that certain binary Ag(+)-amino acid complexes formed adduct ions by the attachment of a single water and methanol molecule when stored in an ion trap mass spectrometer: complexes with aliphatic amino acids and with 4-fluorophenylalanine formed the adduct ions whereas complexes with phenylalanine and tryptophan did not. In this study we compared the tendency of the Ag(+) complexes derived from phenylalanine, 4-fluorophenylalanine, 4-hydroxyphenylalanine (tyrosine), 4-bromophenylalanine, 4-nitrophenylalanine and aminocyclohexanepropionic acid to form water adducts when stored, without further activation, in the ion trap for times ranging from 1 to 500 ms. Because the donation of pi electron density to the Ag(+) ion is a likely determining factor in complex reactivity, our aim in the present study was to determine qualitatively the influence of para-position substituents on the aromatic ring on the formation of the water adducts. Our results show that the reactivity of the complexes is influenced significantly by the presence of the various substituents. Decreases in [M + Ag](+) ion abundance, and increases in adduct ion abundance, both measured as a function of storage time, follow the trend -NO(2) > -Br > -F > -OH > -H. The complex of Ag(+) with 4-nitrophenylalanine was nearly as reactive towards water as the Ag(+) complex with aminocyclohexanepropionic acid, the last being an amino acid devoid of pi character in the ring system. Collision induced dissociation of the [M + Ag](+) species derived from the amino acids produces, among other products, Ag(+) complexes with a para-substituted phenylacetaldehyde: complexes that also form adduct species when stored in the ion trap. The trends in adduct ion formation exhibited by the aldehyde-Ag(+) complex ions were similar to those observed for the precursor complexes of Ag(+) and the amino acids, confirming the influence of the ring substituent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.