The objective of this work was to study the effect of plasma actuators in attenuating low-speed flow-induced cavity tones from a control point of view by employing techniques from classical control. A modification of the existing physics-based linear model produced a new variable structure model in which a plasma actuator was regarded as a linear gain. The parameters of the overall model working at two operating voltages were identified using experimental data. The effects of the plasma actuator control at other various operating voltages were thus able to be predicted using linear interpolation. The good agreement between the predicted and the measured data supported the proposed variable structure model, inside of which plasma actuators affected the damping of cavity pressure oscillations proportionally to the applied voltage to reduce flow-induced tonal noise. With the proposed variable structure model the system stability controlled by plasma actuators at various operating voltages was ensured, thus a closed-loop control method could be applied without leading to instability. A simple proportional integral derivative controller was implemented. Results show the potential of a closed-loop method by increasing system power efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.