We present a study on numerical solutions of nonlinear ordinary differential equations by applying Runge-Kutta-Fehlberg (RKF) method, a well-known adaptive Runge-kutta method. The adaptive Runge-kutta methods use embedded integration formulas which appear in pairs. Typically adaptive methods monitor the truncation error at each integration step and automatically adjust the step size to keep the error within prescribed limit. Numerical solutions to different nonlinear initial value problems (IVPs) attained by RKF method are compared with corresponding classical Runge-Kutta (RK4) approximations in order to investigate the computational superiority of the former. The resulting gain in efficiency is compatible with the theoretical prediction. Moreover, with the aid of a suitable time-stepping scheme, we show that the RKF method invariably requires less number of steps to arrive at the right endpoint of the finite interval where the IVP is being considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.