Eukaryote cells have a flexible shape, which dynamically changes according to the function performed by the cell. One mechanism for deforming the cell membrane into the desired shape is through the expression of curved membrane proteins. Furthermore, these curved membrane proteins are often associated with the recruitment of the cytoskeleton, which then applies active forces that deform the membrane. This coupling between curvature and activity was previously explored theoretically in the linear limit of small deformations, and low dimensionality. Here we explore the unrestricted shapes of vesicles that contain active curved membrane proteins, in three-dimensions, using Monte-Carlo numerical simulations. The activity of the proteins is in the form of protrusive forces that push the membrane outwards, as may arise from the cytoskeleton of the cell due to actin or microtubule polymerization occurring near the membrane. For proteins that have an isotropic convex shape, the additional protrusive force enhances their tendency to aggregate and form membrane protrusions (buds). In addition, we find another transition from deformed spheres with necklace type aggregates, to flat pancake-shaped vesicles, where the curved proteins line the outer rim. This second transition is driven by the active forces, coupled to the spontaneous curvature, and the resulting configurations may shed light on the organization of the lamellipodia of adhered and motile cells. † MF and SP provided Monte-Carlo simulations; NG provided the model for active proteins and linear stability analysis; AI, VKI and MD provided the model of selfassembly in equilibrium.
Migratory cells use distinct motility modes to navigate different microenvironments, but it is unclear whether these modes rely on the same core set of polarity components. To investigate this, we disrupted actin-related protein 2/3 (Arp2/3) and the WASP-family verprolin homologous protein (WAVE) complex, which assemble branched actin networks that are essential for neutrophil polarity and motility in standard adherent conditions. Surprisingly, confinement rescues polarity and movement of neutrophils lacking these components, revealing a processive bleb-based protrusion program that is mechanistically distinct from the branched actin-based protrusion program but shares some of the same core components and underlying molecular logic. We further find that the restriction of protrusion growth to one site does not always respond to membrane tension directly, as previously thought, but may rely on closely linked properties such as local membrane curvature. Our work reveals a hidden circuit for neutrophil polarity and indicates that cells have distinct molecular mechanisms for polarization that dominate in different microenvironments.
Biological membranes are composed of different components and there is no a priori reason to assume that all components are isotropic. It was previously shown that the anisotropic properties of membrane components may explain the stability of membrane tubular protrusions even without the application of external force. Our theoretical study focuses on the role of anisotropic membrane components in the stability of membrane tubular structures generated or stabilized by actin filaments. We show that the growth of the actin cytoskeleton inside the vesicle can induce the partial lateral segregation of different membrane components. The entropy of mixing of membrane components hinders the total lateral segregation of the anisotropic and isotropic membrane components. Self-assembled aggregates formed by anisotropic membrane components facilitate the growth of long membrane tubular protrusions. Protrusive force generated by actin filaments favors strong segregation of membrane components by diminishing the opposing effect of mixing entropy.
Eukaryotic cells adhere to extracellular matrix during the normal development of the organism, forming static adhesion as well as during cell motility. We study this process by considering a simplified coarse-grained model of a vesicle that has uniform adhesion energy with a flat substrate, mobile curved membrane proteins and active forces. We find that a high concentration of curved proteins alone increases the spreading of the vesicle, by the self-organization of the curved proteins at the high curvature vesicle-substrate contact line, thereby reducing the bending energy penalty at the vesicle rim. This is most significant in the regime of low bare vesicle-substrate adhesion. When these curved proteins induce protrusive forces, representing the actin cytoskeleton, we find efficient spreading, in the form of sheet-like lamellipodia. Finally, the same mechanism of spreading is found to include a minimal set of ingredients needed to give rise to motile phenotypes.
In this mini-review, a brief historical survey of the mechanisms which determine the shapes of liposomes and cells and the budding and fission of their membrane is presented. Special attention is given to the role of orientational ordering of membrane components in thin membrane necks which connect the membrane buds (daughter vesicles) to the parent membrane. It is indicated that topological anti-defects in membrane necks may induce the rupture of the neck and the fission of the membrane daughter vesicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.