In many coastal areas around the world, the seagrasses provide an essential source of livelihood for many civilizations and support high levels of biodiversity. Seagrasses are highly valuable, as they provide habitat for numerous fish, endangered sea cows, Dugong dugons, and sea turtles. The health of seagrasses is being threatened by many human activities. The process of seagrass conservation requires the annotation of every seagrass species within the seagrass family. The manual annotation procedure is time-consuming and lacks objectivity and uniformity. Automatic annotation based on Lightweight Deep Seagrass (LWDS) is proposed to solve this problem. LWDS computes combinations of various resized input images and various neural network structures, to determine the ideal reduced image size and neural network structure with satisfactory accuracy and within a reasonable computation time. The main advantage of this LWDS is it classifies the seagrasses quickly and with lesser parameters. The deepseagrass dataset is used to test LWDS's applicability.
The world has been greatly affected by increased utilization of mobile methods as well as smart devices in field of health. Health professionals are increasingly utilizing these technologies' advantages, resulting in a significant improvement in clinical health care. For this purpose, machine learning (ML)as well as Internet of Things (IoT) can be utilized effectively. This study aims to propose a novel data analysis method for a health monitoring system based on machine learning. Goal of research is to create a ML based smart health monitoring method. It lets doctors keep an eye on patients from a distance as well as take periodic actions if they need to. Utilizing wearable sensors, a set of five parameters—the electrocardiogram (ECG), pulse rate, pressure, temperature, and position detection—have been identified. Kernelized component vector neural networks are used to choose the features in the input data. Then, a sparse attention-based convolutional neural network with a structural search algorithm was used to classify the selected features. For a variety of datasets, the proposed technique attained validation accuracy 95%, training accuracy 92%, RMSE 52%, F-measure 53%, sensitivity 77%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.