Background: Fluoxetine, a selective serotonin reuptake inhibitor, is the most commonly prescribed antidepressant drug for pregnant women. Studies regarding the teratogenic effect of fluoxetine on human and animal models are mainly concerned with structural malformation (congenital anomalies). Aim: Hence, the present study was planned to evaluate the postnatal behavioral effects of fluoxetine on albino rats. Methods: Three groups of female rats received either distilled water or doses of fluoxetine 8 and 12 mg/kg orally from the 6th to the 20th day of pregnancy. Weaning of the pups was done on the 21st day followed by a battery of behavioral tests to assess for any behavioral effect. The tests included negative geotaxis, open field exploration, rota-rod test, elevated plus maze and passive avoidance test. Results: In the present study there was no change in the gestational length of pregnancy, no premature birth or miscarriage during pregnancy. A high dose of in utero fluoxetine resulted in a decrease in birth weight of the offspring and also reduced weight gain during the preweaning period. No major congenital abnormalities were observed in the offspring exposed to fluoxetine. Prenatal fluoxetine exposure at high dose caused an initial transient delay in motor development and this poor motor activity was transient and not permanent. However, prenatal exposure to fluoxetine at a higher dose showed a favorable effect on learning and memory in water maze and passive avoidance tests. Conclusions: From the present study, it may be concluded that prenatal fluoxetine causes a transient delay in motor development but does not adversely affect the postnatal behavioral consequences.
Intrathecal methotrexate in children with leukemia is known to cause seizures, dementia, leukoencephalopathy, and cognitive dysfunction after long-term treatment. To investigate the cognitive dysfunction, male Wistar rats were given multiple intracerebroventricular injections of methotrexate. Its effect on behaviour was tested in the two-compartment conditioned avoidance task and dark-bright arena test. Levels of brain amines in the hippocampal region of the brain were estimated by HPLC. The qualitative and quantitative histopathological changes in the different regions of the hippocampus were studied by cresyl violet staining. Multiple injections (1 or 2 mg/kg) produced convulsions and learning and memory impairment but did not induce anxiolytic activity. They also reduced concentrations of all three brain amines (norepinephrine, dopamine, and serotonin) and the serotonin metabolite 5-hydroxyindoleacetic acid. The CA4 region of the hippocampus was severely affected by intraventricular methotrexate. Disruption of brain monoamines has been proposed as a cause of brain dysfunction from this chemotherapy, and that disruption may in turn involve cytotoxic effects of methotrexate on brain tissue. The outcomes of this study may have therapeutic implications in the management of cancer conditions, particularly in childhood lymphoblastic leukemia.
Prenatal stress induced neuronal dysfunction is multifactorial, including suppressed neurogenesis in developing brain. Resveratrol is known to exert its neuroprotective potential by enhancing neurogenesis. But the efficacy of resveratrol against prenatal stress was not addressed in detail. Hence in the present study we evaluated the neuroprotective action of resveratrol on prenatal stress-induced impaired neurogenesis. Pregnant rats were subjected to restraint stress during early or late gestational period. Another sets of rats received resveratrol during entire gestational period along with early or late gestational stress. The study parameters included neuronal assay of doublecortin positive neurons (DCX +ve) and brain derived neurotrophic factor (BDNF) estimations in 40th postnatal day rat brain. Both early and late gestational stress resulted in significant decrease in generation of new born neurons and BDNF expression in hippocampus. The decrease in number of DCX +ve neurons and hippocampal BDNF expression was more profound in the offspring who received late gestational stress compared to early gestational stress. Resveratrol treatment has improved the expression of DCX +ve neurons and BDNF expression. These data suggest the neuroprotective efficacy of resveratrol against prenatal stress induced impaired neurogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.