The Controller Area Network (CAN) is the most widely used in-vehicle communication protocol, which still lacks the implementation of suitable security mechanisms such as message authentication and encryption. This makes the CAN bus vulnerable to numerous cyber attacks. Various Intrusion Detection Systems (IDSs) have been developed to detect these attacks. However, the high generalization capabilities of Artificial Intelligence (AI) make AI-based IDS an excellent countermeasure against automotive cyber attacks. This article surveys AI-based in-vehicle IDS over the period of 2016-2022 (August) with a novel taxonomy. It reviews the detection techniques, attack types, features, and benchmark datasets. Furthermore, the paper discusses the security of AI models, necessary steps to develop AI-based IDSs in the CAN bus, identifies the limitations of existing proposals and gives recommendations for future research directions.
The growth of information technologies has driven the development of the transportation sector, including connected and autonomous vehicles. Due to its communication capabilities, the controller area network (CAN) is the most widely used in-vehicle communication protocol. However, CAN lacks suitable security mechanisms such as message authentication and encryption. This makes the CAN bus vulnerable to numerous cyberattacks. Not only are these attacks a threat the information security and privacy, but they can also directly affect the safety of drivers, passengers and the surrounding environment of the moving vehicles. This paper presents CAN-CID, a context-aware intrusion detection system (IDS) to detect cyberattacks on the CAN bus, which would be suitable for deployment in automobiles including military vehicles, passenger cars, commercial vehicles and other CAN-based applications such as aerospace, industrial automation and medical equipment. CAN-CID is an ensemble model of a gated recurrent unit (GRU) network and a time-based model. A GRU algorithm works by learning to predict the centre ID of a CAN ID sequence, and ID-based probabilistic thresholds are used to identify anomalous IDs, whereas the time-based model identifies anomalous IDs using time-based thresholds. The number of anomalies compared to the total number of IDs over an observation window is used to classify the window status as anomalous or benign. The proposed model uses only benign data for training and threshold estimation, avoiding the need to collect realistic attack data to train the algorithm. The performance of the CAN-CID model was tested against three datasets over a range of 16 attacks, including fabrication and more sophisticated masquerade attacks. The CAN-CID model achieved an F1-Score of over 99% for 13 of those attacks and outperformed benchmark models from the literature for all attacks, with near real-time detection latency.
Vulnerable source code in software applications is causing paramount reliability and security issues. Software security principles should be integrated to reduce these issues at the early stages of the development lifecycle. Artificial Intelligence (AI) could be applied to detect vulnerabilities in source code. In this research, a Machine Learning (ML) based method is proposed to detect source code vulnerabilities in C/C++ applications. Furthermore, Explainable AI (XAI) was applied to support developers in identifying vulnerable source code tokens and understanding their causes. The proposed model can detect whether the code is vulnerable or not in binary classification with 0.96 F1-Score. In case of vulnerability type detection, a multi-class classification based on CWE-ID, the model achieved 0.85 F1-Score. Several ML classifiers were tested, and the Random Forest (RF) and Extreme Gradient Boosting (XGB) performed well in binary and multi-class approaches respectively. Since the model is trained on a dataset containing actual source codes, the model is highly generalizable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.