This study analyzes the optimal management of Scots pine (Pinus sylvestris L.) stands by applying recent developments in numerical optimization methods and forest production ecology. Our approach integrates a process-based, stand-level growth model and a detailed economic description of stand management. The variables optimized include the initial stand density, the number, timing, type, and intensity of thinnings, and the rotation period. A generalized pattern search is used to maximize the present value of net timber revenue over an infinite time horizon. The model adopts quality pricing, which takes branch size and quality into account, to differentiate among five different timber assortments. The analysis also covers five different site types. The results demonstrate the necessity of optimizing all of the management variables simultaneously. Given a low interest rate, optimized thinning significantly increases the rotation period, volume yield, and economic outcome. At higher interest rates, optimal rotation may be shortest under the least fertile growth conditions. The inclusion of a detailed price structure reveals that previous results concerning sensitivity to timber price and the relationship between maximum sustainable yield and economic solutions do not hold true in models that provide a more realistic description of forest management.
Long-term scenario analyses can be powerful tools to explore plausible futures of human development under changing environmental, social, and economic conditions and to evaluate implications of different approaches to reduce pollution and resource overuse. Vulnerable ecosystems like the Baltic Sea in NorthEastern Europe tend to be under pressure from multiple, interacting anthropogenic drivers both related to the local scale (e.g. land use change) and the global scale (e.g. climate change). There is currently a lack of scenarios supporting policy-making that systematically explore how global and regional developments could concurrently impact the Baltic Sea region. Here, we present five narratives for future development in the Baltic Sea region, consistent with the global Shared Socioeconomic Pathways (SSPs) developed for climate research. We focus on agriculture, wastewater treatment, fisheries, shipping, and atmospheric deposition, which all represent major pressures on the Baltic Sea. While we find strong links between the global pathways and regional pressures, we also conclude that each pathway may very well be the host of different sectoral developments, which in turn may have different impacts on the ecosystem state. The extended SSP narratives for the Baltic Sea region are intended as a description of sectoral developments at regional scale that enable detailed scenario analysis and discussions across different sectors and disciplines, but within a common context. In addition, the extended SSPs can readily be combined with climate pathways for integrated scenario analysis of regional environmental problems.
The Baltic Sea is suffering from eutrophication caused by nutrient discharges from land to sea, and these loads might change in a changing climate. We show that the impact from climate change by mid-century is probably less than the direct impact of changing socioeconomic factors such as land use, agricultural practices, atmospheric deposition, and wastewater emissions. We compare results from dynamic modelling of nutrient loads to the Baltic Sea under projections of climate change and scenarios for shared socioeconomic pathways. Average nutrient loads are projected to increase by 8% and 14% for nitrogen and phosphorus, respectively, in response to climate change scenarios. In contrast, changes in the socioeconomic drivers can lead to a decrease of 13% and 6% or an increase of 11% and 9% in nitrogen and phosphorus loads, respectively, depending on the pathway. This indicates that policy decisions still play a major role in climate adaptation and in managing eutrophication in the Baltic Sea region.Electronic supplementary materialThe online version of this article (10.1007/s13280-019-01243-5) contains supplementary material, which is available to authorized users.
We optimize timber and bioenergy production combined with carbon storage in Scots pine (Pinus sylvestris L.) stands, using an ecological-economic model. Forest growth is specified with a highly detailed process-based growth specification, and optimization is based on an efficient generalized pattern search algorithm. The optimized variables are rotation length, initial stand density, and the number, intensity, timing, and type of thinnings. The carbon pool includes all aboveground biomass (including dead trees) and timber products. The analysis includes the comparison of different carbon subsidy systems. The results are presented for the most relevant site types and thermal zones in Finland. Carbon storage increases the optimal rotation length, number of thinnings, and initial density at all forest sites. Carbon storage effects on stand density and harvests are strongest at poor sites. Timber output increases with carbon price. High natural mortality in our results implies notable carbon storage in dead trees and a positive contribution to biodiversity. The stand-level analysis is extended to a cost-efficient national-level carbon storage plan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.