Cancer stem cells (CSCs) have been identified in a number of solid tumors, but not yet in rhabdomyosarcoma (RMS), the most frequently occurring soft tissue tumor in childhood. Hence, the aim of this study was to identify and characterize a CSC population in RMS using a functional approach. We found that embryonal rhabdomyosarcoma (eRMS) cell lines can form rhabdomyosarcoma spheres (short rhabdospheres) in stem cell medium containing defined growth factors over several passages. Using an orthotopic xenograft model, we demonstrate that a 100 fold less sphere cells result in faster tumor growth compared to the adherent population suggesting that CSCs were enriched in the sphere population. Furthermore, stem cell genes such as oct4, nanog, c-myc, pax3 and sox2 are significantly upregulated in rhabdospheres which can be differentiated into multiple lineages such as adipocytes, myocytes and neuronal cells. Surprisingly, gene expression profiles indicate that rhabdospheres show more similarities with neuronal than with hematopoietic or mesenchymal stem cells. Analysis of these profiles identified the known CSC marker CD133 as one of the genes upregulated in rhabdospheres, both on RNA and protein levels. CD133+ sorted cells were subsequently shown to be more tumorigenic and more resistant to commonly used chemotherapeutics. Using a tissue microarray (TMA) of eRMS patients, we found that high expression of CD133 correlates with poor overall survival. Hence, CD133 could be a prognostic marker for eRMS. These experiments indicate that a CD133+ CSC population can be enriched from eRMS which might help to develop novel targeted therapies against this pediatric tumor.
Estrogen receptor β1 (ERβ1) downregulation occurs in many breast cancers, but the responsible molecular mechanisms remain unclear. Here, we report that levels of ERβ1 expression are negatively regulated by the microRNA miR-92. Expression analysis in a cohort of primary breast tumors confirmed a significant negative correlation between miR-92 and both ERβ1 mRNA and protein. Inhibition of miR-92 in MCF-7 cells increased ERβ1 expression in a dose-dependent manner, whereas miR-92 overexpression led to ERβ1 downregulation. Reporter constructs containing candidate miR-92 binding sites in the 3′-untranslated region (UTR) of ERβ1 suggested by bioinformatics analysis confirmed that miR-92 downregulated ERβ1 via direct targeting of its 3′-UTR. Our results define a potentially important mechanism for downregulation of ERβ1 expression in breast cancer. Cancer Res; 70(11); 4778-84. ©2010 AACR.
Oestrogen receptors (ERs) are critical regulators of the behaviour of many cancers. Despite this, the roles and regulation of one of the two known ERs – ERβ– are poorly understood. This is partly because analyses have been confused by discrepancies between ERβ expression at mRNA and proteins levels, and because ERβ is expressed as several functionally distinct isoforms. We investigated human ERβ 5′ untranslated regions (UTRs) and their influences on ERβ expression and function. We demonstrate that two alternative ERβ 5′UTRs have potent and differential influences on expression acting at the level of translation. We show that their influences are modulated by cellular context and in carcinogenesis, and demonstrate the contributions of both upstream open reading frames and RNA secondary structure. These regulatory mechanisms offer explanations for the non-concordance of ERβ mRNA and protein. Importantly, we also demonstrate that 5′UTRs allow the first reported mechanisms for differential regulation of the expression of the ERβ isoforms 1, 2 and 5, and thereby have critical influences on ERβ function.
Current treatment regimens for rhabdomyosarcoma (RMS), the most common pediatric soft tissue cancer, rely on conventional chemotherapy, and although they show clinical benefit, there is a significant risk of adverse side effects and secondary tumors later in life. Therefore, identifying and targeting sub-populations with higher tumorigenic potential and self-renewing capacity would offer improved patient management strategies. Hedgehog signaling has been linked to the development of embryonal RMS (ERMS) through mouse genetics and rare human syndromes. However, activating mutations in this pathway in sporadic RMS are rare and therefore the contribution of hedgehog signaling to oncogenesis remains unclear. Here, we show by genetic loss- and gain-of-function experiments and the use of clinically relevant small molecule modulators that hedgehog signaling is important for controlling self-renewal of a subpopulation of RMS cells in vitro and tumor initiation in vivo. In addition, hedgehog activity altered chemoresistance, motility and differentiation status. The core stem cell gene NANOG was determined to be important for ERMS self-renewal, possibly acting downstream of hedgehog signaling. Crucially, evaluating the presence of a subpopulation of tumor-propagating cells in patient biopsies identified by GLI1 and NANOG expression had prognostic significance. Hence, this work identifies novel functional aspects of hedgehog signaling in ERMS, redefines the rationale for its targeting as means to control ERMS self-renewal and underscores the importance of studying functional tumor heterogeneity in pediatric cancers.
Although ERs (oestrogen receptors) mediate breast tumour behaviour, the precise role of ERbeta remains unclear. This is mainly because analyses have been complicated by the presence in breast tissue of three ERbeta protein variants (ERbeta1, ERbeta2 and ERbeta5) that derive from differential 3' splicing. We have recently identified the first known mechanisms responsible for the differential control of isoform expression, involving regulation of translation via 5'-UTRs (untranslated regions). In the present study, we have uncovered further complexity involving the influence of multiple promoters and cross-talk between 5'- and 3'-UTRs. We demonstrate that full-length ERbeta mRNAs are transcribed from three separate promoters; two promoters are well-established within the literature, whereas the third represents a novel finding. Each promoter produces transcripts with distinct 5'-UTRs. The differential 3' splicing that produces transcripts coding for the ERbeta isoforms also defines isoform-specific 3'-UTRs. We identified exact 3'-UTR sequences for each isoform, and have shown that alternative polyadenylation sites are used in a cell-type specific manner to produce transcripts with 3'-UTRs of different lengths. Critically, we show that 5'- and 3'-UTRs combine to specify the efficiencies with which individual transcripts are translated, with 3'-UTR length having a key influence. In addition, we demonstrate how 17beta-oestradiol, a key driver of breast cancer development, affects the regulation of ERbeta expression at both transcriptional and translational levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.