Disciplined approximate programming lets programmers declare which parts of a program can be computed approximately and consequently at a lower energy cost. The compiler proves statically that all approximate computation is properly isolated from precise computation. The hardware is then free to selectively apply approximate storage and approximate computation with no need to perform dynamic correctness checks. In this paper, we propose an efficient mapping of disciplined approximate programming onto hardware. We describe an ISA extension that provides approximate operations and storage, which give the hardware freedom to save energy at the cost of accuracy. We then propose Truffle, a microarchitecture design that efficiently supports the ISA extensions. The basis of our design is dual-voltage operation, with a high voltage for precise operations and a low voltage for approximate operations. The key aspect of the microarchitecture is its dependence on the instruction stream to determine when to use the low voltage. We evaluate the power savings potential of in-order and out-of-order Truffle configurations and explore the resulting quality of service degradation. We evaluate several applications and demonstrate energy savings up to 43%.
Disciplined approximate programming lets programmers declare which parts of a program can be computed approximately and consequently at a lower energy cost. The compiler proves statically that all approximate computation is properly isolated from precise computation. The hardware is then free to selectively apply approximate storage and approximate computation with no need to perform dynamic correctness checks.In this paper, we propose an efficient mapping of disciplined approximate programming onto hardware. We describe an ISA extension that provides approximate operations and storage, which give the hardware freedom to save energy at the cost of accuracy. We then propose Truffle, a microarchitecture design that efficiently supports the ISA extensions. The basis of our design is dual-voltage operation, with a high voltage for precise operations and a low voltage for approximate operations. The key aspect of the microarchitecture is its dependence on the instruction stream to determine when to use the low voltage. We evaluate the power savings potential of in-order and out-of-order Truffle configurations and explore the resulting quality of service degradation. We evaluate several applications and demonstrate energy savings up to 43%.
Energy efficiency is a key concern in the design of modern computer systems. One promising approach to energy-efficient computation, approximate computing, trades off output accuracy for significant gains in energy efficiency. However, debugging the actual cause of output quality problems in approximate programs is challenging. This paper presents dynamic techniques to debug and monitor the quality of approximate computations. We propose both offline debugging tools that instrument code to determine the key sources of output degradation and online approaches that monitor the quality of deployed applications. We present two offline debugging techniques and three online monitoring mechanisms. The first offline tool identifies correlations between output quality and the execution of individual approximate operations. The second tracks approximate operations that flow into a particular value. Our online monitoring mechanisms are complementary approaches designed for detecting quality problems in deployed applications, while still maintaining the energy savings from approximation. We present implementations of our techniques and describe their usage with seven applications. Our online monitors control output quality while still maintaining significant energy efficiency gains, and our offline tools provide new insights into the effects of approximation on output quality.
Energy efficiency is a key concern in the design of modern computer systems. One promising approach to energy-efficient computation, approximate computing, trades off output accuracy for significant gains in energy efficiency. However, debugging the actual cause of output quality problems in approximate programs is challenging. This paper presents dynamic techniques to debug and monitor the quality of approximate computations. We propose both offline debugging tools that instrument code to determine the key sources of output degradation and online approaches that monitor the quality of deployed applications. We present two offline debugging techniques and three online monitoring mechanisms. The first offline tool identifies correlations between output quality and the execution of individual approximate operations. The second tracks approximate operations that flow into a particular value. Our online monitoring mechanisms are complementary approaches designed for detecting quality problems in deployed applications, while still maintaining the energy savings from approximation. We present implementations of our techniques and describe their usage with seven applications. Our online monitors control output quality while still maintaining significant energy efficiency gains, and our offline tools provide new insights into the effects of approximation on output quality.
In approximate computing, programs gain efficiency by allowing occasional errors. Controlling the probabilistic effects of this approximation remains a key challenge. We propose a new approach where programmers use a type system to communicate high-level constraints on the degree of approximation. A combination of type inference, code specialization, and optional dynamic tracking makes the system expressive and convenient. The core type system captures the probability that each operation exhibits an error and bounds the probability that each expression deviates from its correct value. Solver-aided type inference lets the programmer specify the correctness probability on only some variables—program outputs, for example—and automatically fills in other types to meet these specifications. An optional dynamic type helps cope with complex run-time behavior where static approaches are insufficient. Together, these features interact to yield a high degree of programmer control while offering a strong soundness guarantee. We use existing approximate-computing benchmarks to show how our language, DECAF, maintains a low annotation burden. Our constraint-based approach can encode hardware details, such as finite degrees of reliability, so we also use DECAF to examine implications for approximate hardware design. We find that multi-level architectures can offer advantages over simpler two-level machines and that solver-aided optimization improves efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.