In the quest for increased control and tuneability of organic patterns at metal surfaces, more and more systems emerge that rely upon coordination of metal adatoms by organic ligands using endgroups such as carbonitriles, amines, and carboxylic acids.[1] Such systems promise great flexibility in the size and geometry of the surface pattern through choice of the ligand shape, the number and arrangement of ligating endgroups, and the nature of the metal centers. Planar (trigonal or square) arrangements of ligands around metal centers occur most commonly as a result of attractive interactions of the ligands with the substrate. In contrast, in the solution phase planar, and in particular trigonal planar, arrangements are quite rare and generally require ligands whose nature (for example bidentate, pincer shape) forces planarity.Given the relatively short history of the field of surface coordination chemistry, compared to its solution-phase counterpart, it is of great interest to know which information can be gleaned from the latter to predict that for the former.
This study presents a systematic detailed experimental and theoretical investigation of the electronic properties of size-controlled free and γ-Al(2)O(3)-supported Pt nanoparticles (NPs) and their evolution with decreasing NP size and adsorbate (H(2)) coverage. A combination of in situ X-ray absorption near-edge structure (XANES) and density functional theory (DFT) calculations revealed changes in the electronic characteristics of the NPs due to size, shape, NP-adsorbate (H(2)) and NP-support interactions. A correlation between the NP size, number of surface atoms and coordination of such atoms, and the maximum hydrogen coverage stabilized at a given temperature is established, with H/Pt ratios exceeding the 1 : 1 ratio previously reported for bulk Pt surfaces.
We have carried out scalar relativistic density functional theory calculations within the projector augmented wave scheme and the pseudopotential approach, to examine the effect of ligands on the geometric and electronic structure of four Au 13 isomers: planar, flake, cuboctahedral, and icosahedral clusters. We find, in agreement with previous theoretical calculations, that for the clean cluster the planar geometry has the lowest total energy while the icosahedral and cuboctahedral structures undergo Jahn-Teller distortion. On the other hand, when ligated by phosphines, the icosahedron is found to assume the lowest total energy. The rationale for the stabilization of the icosahedron in the ligated Au 13 cluster is traced to the ligand-induced charge transfer from the surface Au-Au to Au-ligand bonds leading to the formation of a strong Au-ligand covalent bond and introduction of a compressive strain which further weakens the Au-Au bonds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.