A study of the variation of the temperature and the speed under an open greenhouse with and without plant was developed and the effect of the wind speed on the internal climate under the greenhouse was analyzed by the use of the software Fluent-CFD based on the finite volume method. The airflow through the crop was introduced by using the porous medium approach. Three dimensional simulations which described turbulent flows in steady state were carried out and the turbulence was modeled by using the standard k-ε model. The air temperature variation shows a gradient from the sidewalls towards the center of the greenhouse due to the movement of the hot air rising towards the roof and another vertical gradient due to the air circulation above the surface of the heated floor. At the openings, the maximum air velocity was reached and the lowest values are observed in the middle of the greenhouse, at the crop level and at the corners. The variation of the climatic parameters affects greatly the growth of the plant. The results of the simulation given as airflows and temperature patterns are satisfactory while comparing them to those of the literature. These results can help to know the distribution of the internal climate inside the greenhouse, so they facilitate the openings design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.