The Himalayas are characterized by a broad gradient of bioclimatic zones along their elevation. However, less is known how forest growth responds to climatic change along elevation. In this study, four standard treering width chronologies of Himalayan fir (Abies spectabilis) were developed, spanning 142-649 years along an elevation gradient of 3076-3900 m a.s.l. Principal component analysis classified the four chronologies into two groups; the ones at lower elevations (M1 and M2) and higher elevations (M3 and M4) show two distinct growth trends. Radial growth is limited by summer (June-August) precipitation at M3, and by precipitation during spring (March-May) and summer at M4. It is limited by spring temperatures and winter precipitation (December-February) at M1. Tree-ring width chronologies also significantly correlate with winter and spring Palmer Drought Severity Index (PDSI) at M1, and with summer PDSI at M3 and M4. Thus, Himalayan fir growth at high elevations is mainly limited by moisture stress rather than by low temperatures. Furthermore, the occurrence of missing rings coincides with dry periods, providing additional evidence for moisture limitation of Himalayan fir growth.
It is a challenge to scale‐up from simplified proxies to ecosystem functioning since the inherent complexity of natural ecosystems hinders such an approach. One way to address this complexity is to track ecosystem processes through the lens of plant functional traits. Elevational gradients with diverse biotic and abiotic conditions offer ideal settings for inferring functional trait responses to environmental gradients globally. However, most studies have focused on differences in mean trait values among species, and little is known on how intraspecific traits vary along wide elevational gradients and how this variability reflects ecosystem productivity. We measured functional traits of the sub‐shrub Koenigia mollis (Basionym: Polygonum molle; a widespread species) in 11 populations along a wide elevational gradient (1515–4216 m) considering from subtropical forest to alpine treeline in the central Himalayas. After measuring different traits (plant height, specific leaf area, leaf area, length of flowering branches, leaf carbon isotope (δ13C), leaf carbon and leaf nitrogen concentrations), we investigated drivers on changes of these traits and also characterized their relationships with elevation, climate and ecosystem productivity. All trait values decreased with increasing elevation, except for δ13C that increased upwards. Likewise, most traits showed strong positive relationships with potential evapotranspiration, while δ13C exhibited a negative relationship. In this context, elevation‐dependent water–energy dynamics is the primary driver of trait variations. Furthermore, six key traits (plant height, length of flowering branch, specific leaf area, leaf carbon, leaf nitrogen and leaf δ13C) explained 90.45% of the variance in ecosystem productivity. Our study evidences how elevation‐dependent climate variations affect ecosystem processes and functions. Intraspecific variability in leaf functional traits is strongly driven by changes in water–energy dynamics, and reflects changes in ecosystem productivity over elevation. K. mollis, with one of the widest elevational gradients known to date, could be a model species to infer functional trait responses to environmental gradients globally. As inferred from K. mollis, the water–energy dynamics can be a hydrothermal variable to understand the formation of vegetation boundaries, such as alpine treeline. This study sheds new insight on how plants modify their basic ecological strategies to cope with changing environments. Read the free Plain Language Summary for this article on the Journal blog.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.