Temperature dependent diffuse reflectance spectroscopy measurements were carried out on polycrystalline samples of BaTiO3 across the tetragonal to cubic structural phase transition temperature (TP). The values of various optical parameters such as band gap (Eg), Urbach energy (Eu), and Urbach focus (E0) were estimated in the temperature range of 300 K to 480 K. It was observed that with increasing temperature, Eg decreases and shows a sharp anomaly at TP. First principle studies were employed in order to understand the observed change in Eg due to the structural phase transition. Near TP, there exist two values of E0, suggesting the presence of electronic heterogeneity. Further, near TP, Eu shows metastability, i.e., the value of Eu at temperature T is not constant but is a function of time (t). Interestingly, it is observed that the ratio of Eu (t=0)/Eu (t = tm), almost remains constant at 300 K (pure tetragonal phase) and at 450 K (pure cubic phase), whereas this ratio decreases close to the transition temperature, which confirms the presence of electronic metastability in the pure BaTiO3. The time dependence of Eu, which also shows an influence of the observed metastability can be fitted with the stretched exponential function, suggesting the presence of a dynamic heterogeneous electronic disorder in the sample across TP. First principle studies suggest that the observed phase coexistence may be due to a very small difference between the total cohesive energy of the tetragonal and the cubic structure of BaTiO3. The present work implies that the optical studies may be a sensitive probe of disorder/heterogeneity in the sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.