Genomic outcomes of hybridization depend on selection and recombination in hybrids. Whether these processes have similar effects on hybrid genome composition in contemporary hybrid zones versus ancient hybrid lineages is unknown. Here we show that patterns of introgression in a contemporary hybrid zone in Lycaeides butterflies predict patterns of ancestry in geographically adjacent, older hybrid populations. We find a particularly striking lack of ancestry from one of the hybridizing taxa, Lycaeides melissa, on the Z chromosome in both the old and contemporary hybrids. The same pattern of reduced L. melissa ancestry on the Z chromosome is seen in two other ancient hybrid lineages. More generally, we find that patterns of ancestry in old or ancient hybrids are remarkably predictable from contemporary hybrids, which suggests selection and recombination affect hybrid genomes in a similar way across disparate time scales and during distinct stages of speciation and species breakdown.
Despite accumulating evidence that evolution can be predictable, studies quantifying the predictability of evolution remain rare. Here, we measured the predictability of genome-wide evolutionary changes associated with a recent host shift in the Melissa blue butterfly (Lycaeides melissa). We asked whether and to what extent genome-wide patterns of evolutionary change in nature could be predicted (i) by comparisons among instances of repeated evolution and (ii) from SNP × performance associations in a laboratory experiment. We delineated the genetic loci (SNPs) most strongly associated with host use in two L. melissa lineages that colonized alfalfa. Whereas most SNPs were strongly associated with host use in none or one of these lineages, we detected a an approximately twofold excess of SNPs associated with host use in both lineages. Similarly, we found that host-associated SNPs in nature could also be partially predicted from SNP × performance (survival and weight) associations in a laboratory rearing experiment. But the extent of overlap, and thus degree of predictability, was somewhat reduced. Although we were able to predict (to a modest extent) the SNPs most strongly associated with host use in nature (in terms of parallelism and from the experiment), we had little to no ability to predict the direction of evolutionary change during the colonization of alfalfa. Our results show that different aspects of evolution associated with recent adaptation can be more or less predictable and highlight how stochastic and deterministic processes interact to drive patterns of genome-wide evolutionary change.
Microbes can mediate insect-plant interactions and have been implicated in major evolutionary transitions to herbivory. Whether microbes also play a role in more modest host shifts or expansions in herbivorous insects is less clear. Here we evaluate the potential for gut microbial communities to constrain or facilitate host plant use in the Melissa blue butterfly (Lycaeides melissa). We conducted a larval rearing experiment where caterpillars from two populations were fed plant tissue from two hosts. We used 16S rRNA sequencing to quantify the relative effects of sample type (frass versus whole caterpillar), diet (plant species), butterfly population and development (caterpillar age) on the composition and diversity of the caterpillar gut microbial communities, and secondly, to test for a relationship between microbial community and larval performance. Gut microbial communities varied over time (that is, with caterpillar age) and differed between frass and whole caterpillar samples. Diet (host plant) and butterfly population had much more limited effects on microbial communities. We found no evidence that gut microbe community composition was associated with caterpillar weight, and thus, our results provide no support for the hypothesis that variation in microbial community affects performance in L. melissa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.