Purpose This paper aims to summarize researches conducted related to functional textiles for prevention of pressure ulcers and critical analysis of the outcomes to pave path for the future research in this area for benefit of the patients. Pressure ulcers, also known as bed sores, pressure sores and decubitus ulcers, are localized areas of tissue damage that develop due to pressure usually over a bony prominence. A standard hospital mattress has an interface pressure of 100 mmHg which can result in pressure ulcers unless repositioning occurs at regular intervals. Moisture accumulation on the skin is an important physical factor predisposing a patient to the occurrence of pressure ulcers and tissue breakdown. The disability leads to several requirements of functional clothing and textile products. The textiles play a variety of roles in this concern, from simply having good aesthetic appearance to preventing life threatening risks. An ideal support surface prevents pressure ulcers by providing pressure redistribution and maintaining a healthy skin microenvironment. The use of the textiles for the care of elderly disabled and bedridden persons can play an important role, as their quality of life can be improved by making use of functional and good-looking textiles. Design/methodology/approach This review paper aims to summarize researches conducted related to functional textiles for prevention of pressure ulcers and critical analysis of the outcomes to pave path for the future research in this area for benefit of the patients. Findings In the past years, there have been several functional textiles developed for the prevention of pressure ulcer. They are designed to maintain proper microclimate around patient skin. Sheepskin is one of the oldest used bed overlays which prevent pressure ulcer but its prolonged use leads to uneasy feeling for the patient. A sensor in bed for pressure detection is one of the good alternatives as it provides proper indication on when to change the position of the patient so that the pressure can be shifted and ulcers is prevented. These sensors are costly and complex to setup so for common man they are not easily available. Multilayer textiles on the other hand are complex to make as the properties are dependent upon the fiber content, yarn structure, fabric structure and technique of layering them together. Spacer fabric provides good air and moisture permeability, but there is a scope to study this type of fabric by varying the fibers type and thickness of the spacer fabric. A bedding material which is not much complex and can be easily purchased and used by common man for in-house usage is the need of the hour. Originality/value There is no comprehensive review available regarding research in this area with critical analysis of the outcomes for future study.
Purpose With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been discussed in this review. Scientists have linked the underlying structural or chemical science of textile materials and discovered several strategies for completing some of the most time-consuming tasks with ease and precision. Since the 1980s, computer algorithms and machine learning have been used to aid the majority of the textile testing process. With the rise in demand for automation, deep learning, and neural networks, these two now handle the majority of testing and quality control operations in the form of image processing. Design/methodology/approach The state-of-the-art of artificial intelligence (AI) applications in the textile sector is reviewed in this paper. Based on several research problems and AI-based methods, the current literature is evaluated. The research issues are categorized into three categories based on the operation processes of the textile industry, including yarn manufacturing, fabric manufacture and coloration. Findings AI-assisted automation has improved not only machine efficiency but also overall industry operations. AI's fundamental concepts have been examined for real-world challenges. Several scientists conducted the majority of the case studies, and they confirmed that image analysis, backpropagation and neural networking may be specifically used as testing techniques in textile material testing. AI can be used to automate processes in various circumstances. Originality/value This research conducts a thorough analysis of artificial neural network applications in the textile sector.
Purpose Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel. Design/methodology/approach This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research. Findings Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture. Originality/value The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.
Textiles play a vital role in assuring the thermal stability of the human body. The absorption of perspiration or moisture from a humid environment might result in wet clothing. Protective and sports apparel are often wet when the wearer is involved in high level of activity; thereby affecting the comfort. In order to understand the comfort behaviour of textiles in wet state, most of the researchers used the distilled water or NaCl aqueous solution. However, human sweat is a very complex aqueous mixture of chemicals comprising of salts, lipids, urea, lactic acid, carbohydrates, and minerals. In the present study, the effect of simulated sweat solution on the thermal behaviour of multi-layered fabric assembly is studied and compared with that of distilled water. The multi-layered fabric assembly consists of breathable PU-coated nylon as an outer layer; polyester knitted fabric as an inner layer; and micro-polyester wadding/hollow-polyester wadding/spacer fabric as the middle layer. In addition, the inner layer (next to the skin) is also tested for thermal comfort for both dry and wet states. It is observed that thermal properties of fabrics are drastically affected under wet conditions. The inner layer of fabric wetted with distilled water shows higher thermal conductivity as compared to that wetted with simulated sweat. Among various multi-layered assemblies, the thermal resistance and thermal diffusion of multi-layered assembly having hollow polyester wadding as a middle layer is high as compared to that having spacer fabric in the middle, under both dry and wet conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.