The rhizomes of ginger have been in use in many forms of traditional and alternative medicines. Besides being employed as condiment and flavoring agent, it is used in the treatment of nausea, osteoarthritis, muscle pain, menstrual pain, chronic indigestion, Alzheimer’s disease, and cancer. Ginger rhizome contains volatile oils, phenolic compounds and resins, and characterization studies showed that [6]-gingerol, [6]-shogaol, and [6]-paradol are reported to be the pharmacologically active components. Gingerol is a major chemical constituent found as volatile oil in the rhizomes of ginger. It has several medicinal benefits and used for the treatment of rheumatoid arthritis, nausea, cancer, and diabetes. Many studies have been carried out in various parts of the world to isolate and standardize gingerol for their use as a complementary medicine. The present review summarizes wide range of research studies on gingerol and its pharmacological roles in various metabolic diseases.
Graphical Abstract
A biocatalyst is an enzyme that speeds up or slows down the rate at which a chemical reaction occurs and speeds up certain processes by 108 times. It is used as an anticancer agent because it targets drug activation inside the tumor microenvironment while limiting damage to healthy cells. Biocatalysts have been used for the synthesis of different heterocyclic compounds and is also used in the nano drug delivery systems. The use of nano-biocatalysts for tumor-targeted delivery not only aids in tumor invasion, angiogenesis, and mutagenesis, but also provides information on the expression and activity of many markers related to the microenvironment. Iosmapinol, moclobemide, cinepazide, lysine dioxygenase, epothilone, 1-homophenylalanine, and many more are only some of the anticancer medicines that have been synthesised using biocatalysts. In this review, we have highlighted the application of biocatalysts in cancer therapies as well as the use of biocatalysts in the synthesis of drugs and drug-delivery systems in the tumor microenvironment.
Metallic nanoparticles against bacteria have increased recently due to their
unique properties. Many metals like silver, gold, copper, aluminum, zinc and their
oxides have been shown to have antibacterial properties. The activity of the
nanoparticles is affected by their physico-chemical properties. Different types of
mechanisms are proposed for the antibacterial actions against various types of bacteria.
The metal-based nanoparticles are synthesized by the top-down methods and bottom up methods. However, the latter methods are used effectively against many types of
bacteria including antibiotic-resistant bacteria.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.