We demonstrate the applicability of the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method to the problem of computing ground states of one-dimensional chains of linear rotors with dipolar interactions. Specifically, we successfully obtain energies, entanglement entropies, and orientational correlations that are in agreement with the Density Matrix Renormalization Group (DMRG), which has been previously used for this system. We find that the entropies calculated by ML-MCTDH for the larger system sizes contain a nonmonotonicity, as expected in the vicinity of a second-order quantum phase transition between ordered and disordered rotor states. We observe that this effect remains when all couplings besides nearest-neighbor are omitted from the Hamiltonian, which suggests that it is not sensitive to the rate of decay of the interactions. In contrast to DMRG, which is tailored to the one-dimensional case, ML-MCTDH (as implemented in the Heidelberg MCTDH package) requires more computational time and memory, although the requirements are still within reach of commodity hardware. The numerical convergence and computational demand of two practical implementations of ML-MCTDH and DMRG are presented in detail for various combinations of system parameters.
Motivated by the major role funneling dynamics plays in light-harvesting processes, we built some laser control strategies inspired from basic mechanisms such as interference and kicks, and applied them to the case of pyrazine. We are studying the internal conversion between the two excited states, the highest and directly reachable from the initial ground state being considered as a donor and the lowest as an acceptor. The ultimate control objective is the maximum population deposit in the otherwise dark acceptor from a two-step process: radiative excitation of the donor, followed by a conical-intersection-mediated funneling towards the acceptor. The overall idea is to first obtain the control field parameters (individual pulses leading frequency and intensity, duration, and inter-pulse time delay) for tractable reduced dimensional models basically describing the conical intersection branching space. Once these parameters are optimized, they are fixed and used in full-dimensional dynamics describing the electronic population transfer. In the case of pyrazine, the reduced model is four-dimensional, whereas the full dynamics involves 24 vibrational modes. Within experimentally achievable electromagnetic field requirements, we obtain a robust control with about 60% of the ground state population deposited in the acceptor state, while about 16% remains in the donor. Moreover, we anticipate a possible transposition to the control of even larger molecular systems, for which only a small number of normal modes are active, among all the others acting as spectators in the dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.