Microbial mannanases have become biotechnologically important since they target the hydrolysis of complex polysaccharides of plant tissues into simple molecules like manno-oligosaccharides and mannoses. The role of mannanases in the paper and pulp industry is well established and recently they have found application in the food and feed technology, coffee extraction, oil drilling and detergent industry. Mannanses are enzymes produced mainly from microorganisms but mannanases produced from plants and animals have also been reported. Bacterial mannanases are mostly extracellular and can act in a wide range of pH and temperature, though acidic and neutral mannanases are more common. This review will focus on complex mannan structure and the microbial enzyme complex involved in its complete breakdown, mannanase sources, production conditions and their applications in the commercial sector. The reference to plant and animal mannanases has been made to complete the overview. However, the major emphasis of the review is on the microbial mannanases.
Conditions for the laboratory-scale production of acetoin plus diacetyl by Enterobacter cloacae ATCC 27613 were studied. Thirty-five g acetoin plus diacetyl/50 g sucrose were obtained when fermentation was carried out in 2.5 liter medium containing 12.5 g peptone and 12.5 g yeast extract, at pH 7.0, in a 5 liter conical flask on a shaker (240 rpm) at 28-30 degrees C for 48 hr. Recovery of pure diacetyl was 85% of the total acetoin plus diacetyl.
A thermotolerant bacterium Paenibacillus thiaminolyticus with an ability to produce extracellular β-mannanase was isolated from a soil sample. Bacterium produced 45 U/mL β-mannanase at 50 °C. The culture conditions for high-level production of β-mannanase were optimized. Optimized MS medium [wheat bran 2% (w/v), ammonium sulfate 0.3% (w/v), yeast extract, and peptone (0.025% each) pH 6.5] was inoculated with 2% of 16 H old culture. The culture was incubated at 50 °C for 48 H resulting in 24-folds higher β-mannanase production (1,100 ± 50 U/mL). Optimum pH and temperature for enzyme activity of the crude enzyme was 6.0 and 60 °C, respectively. The enzyme demonstrated 65% relative enzyme activity at 37 °C. The hydrolytic activity of the crude enzymatic preparation was assessed on various agro residues. Thin-layer chromatographic analysis showed that the enzyme activity to saccharify heteromannans resulted in production of a mixture of manno-oligosaccharides (MOS) and enzyme exhibited classic endo-activity. To evaluate the possible prebiotic potential of the MOS thus obtained, initial screening for their ability to support the growth of probiotics was carried out by the pure culture method. Bifidobacterium and Lactobacillus sp. responded positively to the addition of enzymatically derived oligosaccharides and their numbers increased significantly.
Endo-1, 4- β- D-mannanase (EC 3.2.1.78) is a glycoside hydrolase involved in random cleavage of β-1, 4- D-manno-pyranosyl linkages within mannans and heteromannans and generates branched and linear oligosaccharides. A β-mannanase was purified from a thermotolerant bacterium Paenibacillus thiaminolyticus isolated from a soil sample. Enzyme was purified to homogeneity with specific activity of 8812 U/mg protein. Sodium dodecyl sulfate (SDS) and native poly-acryl amide gel electrophoresis indicated that the purified mannanase is a monomeric protein with a molecular mass of 38 kDa. The purified enzyme was found to be maximally active at temperature and pH of 60°C and 7.0, respectively. It was stable at 55°C for 24 h and maintained more than 50 % activity up to 3 h at 60°C. The enzyme was very stable in the pH range of 5.0-9.0. Purified β-mannanase demonstrated high stability after 1 h of pre-incubation with most of the tested organic solvents. Enzyme retained significant stability in the presence of various detergent additives, commercially available detergents and dish washing liquids. The high compatibility and substantial stability in the presence of nonionic detergents and dishwashing liquids confirmed its utility as an additive to dish washing liquids and laundry detergents. Enzyme exhibited efficacious de-staining of heteromannan based stains of chocolate ice cream and salad dressing in the wash performance test for detergent application. It also exhibited anti-soil redeposition effect on cotton swatches treated with tennis court clay and heteromannans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.