As a tremendous amount of service being streamed online to their users along with massive digital privacy information transmitted in recent years, the internet has become the backbone of most people's everyday workflow. The extending usage of the internet, however, also expands the attack surface for cyberattacks. If no effective protection mechanism is implemented, the internet will only be much vulnerable and this will raise the risk of data getting leaked or hacked. The focus of this paper is to propose an Intrusion Detection System (IDS) based on the Convolutional Neural Network (CNN) to reinforce the security of the internet. The proposed IDS model is aimed at detecting network intrusions by classifying all the packet traffic in the network as benign or malicious classes. The Canadian Institute for Cybersecurity Intrusion Detection System (CICIDS2017) dataset has been used to train and validate the proposed model. The model has been evaluated in terms of the overall accuracy, attack detection rate, false alarm rate, and training overhead. A comparative study of the proposed model's performance against nine other well-known classifiers has been presented.
This paper presents an investigation of the rapid variations in the temperature of metal melt pool for Additive Manufacturing (AM) processes. The melt pool is created by scanning a high-power laser beam across a metal powder bed. Rapid heating and cooling processes are involved in the layer-by-layer fabrication of the metal part. Recent advances in Machine Learning and Deep Learning algorithms provide efficient ways to analyze large sets of data in search of correlations that would otherwise be extremely time-consuming. The use of Machine Learning and Deep Learning algorithms to understand temperature variations in AM fabrication process will allow to predict the formation of porosity before it occurs. The objective of this research is to advance the AM technology using enhanced Deep Learning techniques to provide in-situ analysis of the melt pool temperature that can lead to a reliable manufacturing of Three-Dimensional (3D) metal parts/components. In specific, Deep Learning based porosity prediction for Additive Manufacturing (DLAM) methods have been proposed. In DLAMs, several state-of-the-art Deep Learning algorithms such as Convolutional Neural Networks (CNN) using transfer learning, and Residual-Recurrent Convolutional Neural Networks (Res-RCNN) are proposed for effectively performing the end-to-end porosity prediction in real-time using thermal images of melt pool. Experimental results, in this research, show that the Res-RCNN has an overall accuracy of 99.49% and inference time of 8.67ms, and the Res-RCNN outperforms other baseline models. The Res-RCNN's recursive architecture allows the network to view each input image multiples times and at varying feature levels, which enables a slight boost in porosity prediction accuracy over the commonly used transfer learning CNN models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.