Reported are multi-component one-pot syntheses of chiral complexes [M(L(R) OR')Cl2 ] or [M(L(R) SR')Cl2 ] from the mixture of an N-substituted ethylenediamine, pyridine-2-carboxaldehyde, a primary alcohol or thiol and MCl2 utilizing in-situ formed cyclized Schiff bases where a C-O bond, two stereocenters, and three C-N bonds are formed (M=Zn, Cu, Ni, Cd; R=Et, Ph; R'=Me, Et, nPr, nBu). Tridentate ligands L(R) OR' and L(R) SR' comprise two chiral centers and a hemiaminal ether or hemiaminal thioether moiety on the dipicolylamine skeleton. Syn-[Zn(L(Ph) OMe)Cl2 ] precipitates out readily from the reaction mixture as a major product whereas anti-[Zn(L(Ph) OMe)Cl2 ] stays in solution as minor product. Both syn-[Zn(L(Ph) OMe)Cl2 ] and anti-[Zn(L(Ph) OMe)Cl2 ] were characterized using NMR spectroscopy and mass spectrometry. Solid-state structures revealed that syn-[Zn(L(Ph) OMe)Cl2 ] adopted a square pyramidal geometry while anti-[Zn(L(Ph) OMe)Cl2 ] possesses a trigonal bipyramidal geometry around the Zn centers. The scope of this method was shown to be wide by varying the components of the dynamic coordination assembly, and the structures of the complexes isolated were confirmed by NMR spectroscopy, mass spectrometry, and X-ray crystallography. Syn complexes were isolated as major products with Zn(II) and Cu(II) , and anti complexes were found to be major products with Ni(II) and Cd(II) . Hemiaminals and hemiaminal ethers are known to be unstable and are seldom observed as part of cyclic organic compounds or as coordinated ligands assembled around metals. It is now shown, with the support of experimental results, that linear hemiaminal ethers or thioethers can be assembled without the assistance of Lewis acidic metals in the multi-component assembly, and a possible pathway of the formation of hemiaminal ethers has been proposed.
The reaction of uranyl acetate dihydrate with 2,5thiophenedicarboxylic acid (H 2 TDC) as the main ligand and pyrazine (PYZ); piperazine (PZ); 1,4 pyridyl piperazine (PYPZ); 1,4-di(pyridin-4yl) piperazine (DPYZ); 1,2 pyrimidyl piperazine (PMPZ) as auxiliary ligand leads to the formation of five new compounds [UO 2 (TDC)-They were analyzed by IR, UV−vis, thermogravimetric analysis, X-ray diffraction analysis, powder X-ray diffraction, and fluorescence spectroscopy. Depending on the countercation, uranyl thiophene dicarboxylate is shown to crystallize as 2D layer in (I, IV), 2D layer with twofold interpenetrated (6,3) nets in (II), 1D chains in (III), and 2D layer without 2-fold interpenetrated (6,3) nets in (V). The coligand DPYZ in structures of (III and IV) had not been added to the reaction but has been formed by the N-arylation of the PYPZ ligand. Compound (IV) was obtained serendipitously while trying some mixed metal compound. Furthermore, their functional properties, photoluminescence, and photocatalytical activity for oxidation of organic dyes have also been studied. Interestingly, compounds (II and V) with uranyl organic frameworks (UOF's) and honeycomb (6,3) nets possess highest efficiency in degradation of dyes.
BackgroundThe usage of polynuclear metal clusters as secondary building units (SBU’s) in designing of metal organic frameworks (MOF’s) is a field of current interest. These metal clusters have attracted a great deal of attention not only due to their interesting structural topologies but also due to promising physical and chemical properties. In this regard various d,f block (transition and lanthanide) metal clusters have been widely investigated so far. Less attention is paid to construction of heavy p-block Pb(II) clusters.ResultsTwo mixed ligand Pb(II) clusters have been synthesized with bipy(2,2’-Bipyridine), phen(1,10-Phenanthroline), quin (8-Hydroxy quinolinate) and 5-tpc (5-chloro thiophene 2-carboxylate). They have been characterized by elemental analysis, IR, TGA and X-ray crystallography. X-ray diffraction analysis reveals that the complexes [Pb4(quin)4(bipy)2(5-tpc)4] (1) and [Pb4(quin) 4(phen) 2(5-tpc)4] (2) are tetranuclear. The complexes show a slight variation in unit cell parameters, due to the replacement of bipy and the phen ligands. Both complexes contain two types of Pb(II) ions which differ in the coordination geometry around the Pb(II) ion.ConclusionsIn both complexes the four lead ions Pb1,Pb2, Pb1i and Pb2i lie on the same plane bridged by the 5-tpc anions. Pb1 and Pb2 of both complexes contain a 5-tpc and quin coordinated in a bidentate chelating bridging fashion. In addition the Pb2 and Pb2i ions alone contain a bipy and phen in a bidentate chelating fashion in (1) and (2) respectively. An additional notable feature in both of these complexes are the bridging ability of the quin oxygen which forms a network of coordination bonds in between the four Pb(II) ions. In both complexes the individual units are self-assembled by C-H---Cl/C-H---S hydrogen bonding interactions to generate 2-D aggregates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.