The areas of Free Space Optical (FSO) communication and high-speed Visible Light Communication (VLC) offer potential for very high-speed data transmission. Favorable attributes including high frequency and wider bandwidths that can enable transmission speeds of the order 100Gb/s, associated with the visible region of the electromagnetic spectrum make it preferable for allowing communication among satellites and ground stations, under-water communication, etc. However, limitations associated with spectral absorption characteristics of the propagating media have stymied further development of such technologies. Aims: Commercial lasers operating in red, green and blue lights combined with three photodetectors, each sensitive to selected wavelengths (colors) present basics of long-distance optical communication system. The current study (Part II) depicts the design and operation of a solar-blind photodetector capable to work explicitly with green wavelength of 532nm. Study Design and Results: The structure of the solar-blind photodetector consists of two sections made of InxGa1-xN (Indium Gallium Nitride) heterostructure, (where x denotes the mole fraction)-a filter and a double barrier tunneling diode. The topmost approximately 1µm thick section acts as a filter and as a p-i-n solar cell providing the required voltage bias to the photodiode. The filter with Eg (Energy Band Gap)=2.33eV absorbs all photons having wavelengths shorter than 532nm. The double barrier tunneling photodiode which comprises the lower section operates with Eg=2.28eV. It consists of an n-type lightly doped quantum well having a width of 2.5nm housed between two lightly doped barriers of 10nm thickness. The 0.12µm topmost and bottom regions of the photodiode are doped with p and n (2×105cm-3) type impurities, respectively. The illuminated cross-section area of the device is finalized at 1mm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.