Triple-negative breast cancer (TNBC) accounts for approximately 20% of all breast carcinomas and has the worst prognosis of all breast cancer subtypes due to the lack of an effective target. Therefore, understanding the molecular mechanism underpinning TNBC progression could explore a new target for therapy. While the Notch pathway is critical in the development process, its dysregulation leads to TNBC initiation. Previously, we found that manic fringe (MFNG) activates the Notch signaling and induces breast cancer progression. However, the underlying molecular mechanism of MFNG upstream remains unknown. In this study, we explore the regulatory mechanisms of MFNG in TNBC. We show that the increased expression of MFNG in TNBC is associated with poor clinical prognosis and significantly promotes cell growth and migration, as well as Notch signaling activation. The mechanistic studies reveal that MFNG is a direct target of GATA3 and miR205-5p and demonstrate that GATA3 and miR205-5p overexpression attenuate MFNG oncogenic effects, while GATA3 knockdown mimics MFNG phenotype to promote TNBC progression. Moreover, we illustrate that GATA3 is required for miR205-5p activation to inhibit MFNG transcription by binding to the 3′ UTR region of its mRNA, which forms the GATA3/miR205-5p/MFNG feed-forward loop. Additionally, our in vivo data show that the miR205-5p mimic combined with polyetherimide-black phosphorus (PEI-BP) nanoparticle remarkably inhibits the growth of TNBC-derived tumors which lack GATA3 expression. Collectively, our study uncovers a novel GATA3/miR205-5p/MFNG feed-forward loop as a pathway that could be a potential therapeutic target for TNBC.
The CRISPR/Cas systems offer a programmable platform for nucleic acid detection, and CRISPR/Cas-based diagnostics (CRISPR-Dx) have demonstrated the ability to target nucleic acids with greater accuracy and flexibility. However, due to the configuration of the reporter and the underlying labeling mechanism, almost all reported CRISPR-Dx rely on a single-option readout, resulting in limitations in end-point result readouts. This is also associated with high reagent consumption and delays in diagnostic reports due to protocol differences. Herein, we report for the first time a rationally designed Cas12a-based multimodal universal reporter (CAMURE) with improved sensitivity that harnesses a dual-mode reporting system, facilitating options in endpoint readouts. Through systematic configurations and optimizations, our novel universal reporter achieved a 10-fold sensitivity enhancement compared to the DETECTR reporter. Our unique and versatile reporter could be paired with various readouts, conveying the same diagnostic results. We applied our novel reporter for the detection of staphylococcal enterotoxin A due to its high implication in staphylococcal food poisoning. Integrated with loop-mediated isothermal amplification, our multimodal reporter achieved 10 CFU/mL sensitivity and excellent specificity using a real-time fluorimeter, in-tube fluorescence, and lateral flow strip readouts. We also propose, using artificially contaminated milk samples, a fast (2−5 min) Triton X-100 DNA extraction approach with a comparable yield to the commercial extraction kit. Our CAMURE could be leveraged to detect all gene-encoding SEs by simply reprogramming the guide RNA and could also be applied to the detection of other infections and disease biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.