The challenge of Nigeria's food insecurity in the era of the Covid-19 pandemic, insecurity, climate change, population growth, food wastage, etc., is a demanding task. This study addresses Nigeria's food insecurity challenges by adopting agriculture 4.0 and commercial farming. Using data from six digital libraries, the Nigerian Bureau of Statistics, and other internet sources, we conducted a Systematic Literature Review (SLR using PRISMA) on Nigeria's agriculture, food security, and agriculture 4.0. Our results show Nigeria's current agricultural state, threats to food security, and modern digital agriculture technologies. We adapted our SLR findings to develop an implementation framework for agriculture 4.0 in solving Nigeria's food insecurity challenge in the post-Covid-19 era. Our proposed framework integrates precision agriculture in Nigeria's food production and the necessary enabling digital technologies in the agri-food supply chain. We analyzed the critical implementation considerations during each agri-food supply chain stage of farming inputs, farming scale, farming approach, farming operation, food processing, food preservation/storage, distribution/logistics, and the final consumers. This study will help researchers, investors, and the government address food security in Nigeria. The implementation of agriculture 4.0 will substantially contribute to SDG 2 (zero hunger), SDG 3 (good health and well-being), and SDG 8 (decent work and economic growth) of #Envision 2030 of the United Nations, for the benefit of Nigeria, Africa, and the entire world.INDEX TERMS Agriculture 4.0, agri-food 4.0, food security, Sustainability, SDG goal 2, implementation framework, supply chain.
There is a growing interest in using social robots in public spaces for indoor and outdoor applications. The threat landscape is an important research area being investigated and debated by various stakeholders. Objectives: This study aims to identify and synthesize empirical research on the complete threat landscape of social robots in public spaces. Specifically, this paper identifies the potential threat actors, their motives for attacks, vulnerabilities, attack vectors, potential impacts of attacks, possible attack scenarios, and mitigations to these threats. Methods: This systematic literature review follows the guidelines by Kitchenham and Charters. The search was conducted in five digital databases, and 1469 studies were retrieved. This study analyzed 21 studies that satisfied the selection criteria. Results: Main findings reveal four threat categories: cybersecurity, social, physical, and public space. Conclusion: This study completely grasped the complexity of the transdisciplinary problem of social robot security and privacy while accommodating the diversity of stakeholders’ perspectives. Findings give researchers and other stakeholders a comprehensive view by highlighting current developments and new research directions in this field. This study also proposed a taxonomy for threat actors and the threat landscape of social robots in public spaces.
A fascinating and essential control problem for researchers is the inverted pendulum. It remains a generally accepted standard used in control and robotics for validation of emerging control technologies. A mathematical model of the inverted pendulum on a moving base system was derived, an expression of the linearised state space representation of the system was also presented, a controller to achieve specific criterion of the steady state error, rise and settling time, and was obtained, an implementation of this control on MATLAB was carried out together with the simulated animation of the system using Simulink and Simscape.
This paper surveys security threats to 5G-enabled wireless access networks for social robots in public spaces (SRPS). The use of social robots (SR) in public areas requires specific Quality of Service (QoS) planning to meet its unique requirements. Its 5G threat landscape entails more than cybersecurity threats that most previous studies focus on. This study examines the 5G wireless RAN for SRPS from three perspectives: SR and wireless access points, the ad hoc network link between SR and user devices, and threats to SR and users' communication equipment. The paper analyses the security threats to confidentiality, integrity, availability, authentication, authorisation, and privacy from the SRPS security objectives perspective. We begin with an overview of SRPS use cases and access network requirements, followed by 5G security standards, requirements, and the need for a more representative threat landscape for SRPS. The findings confirm that the RAN of SRPS is most vulnerable to physical, side-channel, intrusion, injection, manipulation, and natural and malicious threats. The paper presents existing mitigation to the identified attacks and recommends including physical level security (PLS) and post-quantum cryptography in the early design of SRPS. The insights from this survey will provide valuable risk assessment and management input to researchers, industrial practitioners, policymakers, and other stakeholders of SRPS.INDEX TERMS Social robots, 5G, threat landscape, security, privacy, centralised ledger databases, multiaccess edge computing (MEC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.