Solar cooking is one possible solution to reduce the domination of fossil fuel in the domestic sector and to benefit from renewable energy. This study assesses the solar cooking potential in Switzerland. A nodal model, based on energy balance equations of a box-type solar cooker is implemented in Matlab. Model parameters that cannot be determined experimentally or analytically are evaluated through an optimization procedure based on a Genetic Algorithm (GA). The model is able to predict the temperature of the cooking vessel with an average relative error around 5%. Based on its reliability, the model is simulated over a year for different locations in Switzerland in order to determine the solar cooking potential. It is characterized by a metric that represents the number of days in a year the oven could be used to cook potatoes for two persons. It is found that the cooking times of potatoes can be well predicted by an Arrhenius law with an activation energy of 74.14 kJ mol . The potato cooking criterion is based on the Arrhenius equation and determines if the pot simulated temperature profile of a particular day allows to cook potatoes. The North-East of Switzerland is the least favourable area for solar cooking with theoretically around 155 cooking days per year. Around 240 days are estimated to be suitable for cooking in the cantons of Valais and Grisons, which represents a significant potential for solar cooking in Switzerland.
Solar cooking is one possible solution to reduce the domination of fossil fuel in the domestic sector and to benefit the renewable energy. This study assesses the solar cooking potential in Switzerland. A suited nodal model, based on energy balance equations of a box-type solar cooker is implemented in Matlab. Model parameters that cannot be determined experimentally or analytically are evaluated through an optimization procedure based on a Genetic Algorithm (GA). The model is able to predict the temperature of the cooking vessel with average relative error around 5%. Based on its reliability, the model is simulated over a year for different locations in Switzerland in order to determine the solar cooking potential. It is characterized by a metric which represents the number of days a year the oven could be used to cook potatoes for two persons. It is found that the cooking times of potatoes can be well predicted by an Arrhenius law with an activation energy of 74.14 kJ/mol. A potatoes cooking criterion is based on the Arrhenius equation and determines if the pot simulated temperature profile of a particular day allows to cook potatoes. The North-East of Switzerland is the least favourable area to solar cooking with theoretically around 155 cooking days per year. Around 240 cooking days are estimated in the Valais and the Grisons cantons, which represent a significant potential for solar cooking in Switzerland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.