Forest biomass is an essential indicator for monitoring the Earth’s ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world’s forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.
Malaysia is one of the few South East Asian counties with large tracts of mangroves. They provide ecosystem goods and services to the environment and the surroundings regarding shoreline stabilization, storm protection, water quality maintenance, micro-climate stabilization, recreation, tourism, fishing and supply of various forest products. Despite extensive distribution of the mangroves, threats posed by different land use activities are inevitable. Therefore, knowledge on mangroves distribution and change is importance for effective management and making protection policies. Although remote sensing (RS) and geographic information system (GIS) has been widely used to characterize and monitor mangroves change over a range of spatial and temporal scales, studies on mangroves change in Malaysia is lacking. Effective mangrove management is vital via acquiring knowledge on forest distribution and changes to establish protection policies. This chapter will elaborate technically how GIS and RS were utilized to identify, map, and monitor changes of mangroves ecosystem in Malaysia. It also highlights how GIS can enhance the current governance and regulations related to forestry in Malaysia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.