International audienceCoal gasification and natural gas reforming are regarded as mature technologies for syngas production. These technologies are however highly polluting in terms of greenhouse gas emissions; mainly carbon dioxide. Natural gas reforming is considered cleaner than coal gasification but has some disadvantages in terms of plant maintenance and processing costs as they utilize catalysts which are prone to poisoning; are costly; and require regular regeneration. In mitigation of these issues, plasma-based CO2 dissociation technologies could probably offer a new alternative for syngas production. The plasma-based technologies are more compact, have faster response and reaction time, and are relatively cheaper compared to conventional gasification and reforming. Assuming that electricity is produced by a low carbon emitting (renewable or nuclear) power plant, a comparative review of CO2 dissociation technology for syngas production shows that CO2 dissociation can be competitive from an environmental point of view, but would face several challenges with the current plasma technologies available. Indeed, the results show that for current plasma processes to be competitive with conventional processes for syngas production, the energy efficiency, conversion rate, and processing mass flow rates of the unit operations would have to be simultaneously increased. Syngas production would also be highly dependent on the specific energy input and characteristics of the plasma (technology, electric field, power, etc.). CO2 dissociation would give value to carbon dioxide as it consumes 0.33 moles of CO2 for each mole of syngas produced. Therefore, CO2 dissociation can be attractive as a possible option for the conversion of electrical energy to chemical energy, especially when the electrical energy is from a renewable and low cost electricity production. Keywords: carbon dioxide, CO2 dissociation, syngas production, reforming, plasma, coal gasification, natural gas reformin
Food packaging systems are continually impacted by the growing demand for minimally processed foods, changing eating habits, and food safety risks. Minimally processed foods are prone to the growth of harmful microbes, compromising quality and safety. As a result, the need for improved food shelf life and protection against foodborne diseases alongside consumer preference for minimally processed foods with no or lesser synthetic additives foster the development of innovative technologies such as antimicrobial packaging. It is a form of active packaging that can release antimicrobial substances to suppress the activities of specific microorganisms, thereby improving food quality and safety during long-term storage. However, antimicrobial packaging continues to be a very challenging technology. This study highlights antimicrobial packaging concepts, providing different antimicrobial substances used in food packaging. We review various types of antimicrobial systems. Emphasis is given to the effectiveness of antimicrobial packaging in various food applications, including fresh and minimally processed fruit and vegetables and meat and dairy products. For the development of antimicrobial packaging, several approaches have been used, including the use of antimicrobial sachets inside packaging, packaging films, and coatings incorporating active antimicrobial agents. Due to their antimicrobial activity and capacity to extend food shelf life, regulate or inhibit the growth of microorganisms and ultimately reduce the potential risk of health hazards, natural antimicrobial agents are gaining significant importance and attention in developing antimicrobial packaging systems. Selecting the best antimicrobial packaging system for a particular product depends on its nature, desired shelf life, storage requirements, and legal considerations. The current review is expected to contribute to research on the potential of antimicrobial packaging to extend the shelf life of food and also serves as a good reference for food innovation information.
The discovery of antibiotics, which was once regarded as a timely medical intervention now leaves a bitter aftertaste: antimicrobial resistance (AMR), due to the unregulated use of these compounds and the poor management receiving wastewaters before discharge into pristine environments or the recycling of such treated waters. Wastewater treatment plants (WWTPs) have been regarded a central sink for the mostly unmetabolized or partially metabolised antibiotics and is also pivotal to the incidence of antibiotic resistance bacteria (ARBs) and their resistance genes (ARGs), which consistently contribute to the global disease burden and deteriorating prophylaxis. In this regard, we highlighted WWTP-antibiotics consumption-ARBs-ARGs nexus, which might be critical to understanding the epidemiology of AMR and also guide the precise prevention and remediation of such occurrences. We also discovered the unsophistication of conventional WWTPs and treatment techniques for adequate treatment of antibiotics, ARBs and ARGs, due to their lack of compliance with environmental sustainability, then ultimately assessed the prospects of cold atmospheric plasma (CAP). Herein, we observed that CAP technologies not only has the capability to disinfect wastewater polluted with copious amounts of chemicals and biologicals, but also have a potential to augment bioelectricity generation, when integrated into bio electrochemical modules, which future WWTPs should be retrofitted to accommodate. Therefore, further research should be conducted to unveil more of the unknowns, which only a snippet has been highlighted in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.