Historically, there have been many occurrences of mine fires and explosions recorded in the United States and other countries that have demonstrated the existence of explosive methane-air mixtures, herein referred to as explosive gas zones (EGZs). The risk of mine explosions can increase if the EGZs migrate out from the gob into the surrounding mine entries. Fluctuating barometric pressure is the common cause for EGZs outflowing or outgassing from the gob. Numerical analysis using a 3D computational fluid dynamics method was developed to fully understand the outgassing phenomenon. A number of simulations using various magnitudes and periods of barometric pressure changes indicated that the EGZ outgassing potentially occurs due to lags in pressure, which are strongly influenced by mine conditions and ventilation systems. An early warning system with a real-time pressure monitoring and the application of gob ventilation boreholes are recommended to detect and mitigate explosion hazards from gob outgassing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.