Extracellular vesicles (EVs) are attracting attention as vehicles for inter-cellular signaling that may have value as diagnostic or therapeutic targets. EVs are released by many cell types and by different mechanisms, resulting in phenotypic heterogeneity that makes them a challenge to study. Flow cytometry is a popular tool for characterizing heterogeneous mixtures of particles such as cell types within blood, but the small size of EVs makes them difficult to measure using conventional flow cytometry. To address this limitation, a high sensitivity flow cytometer was constructed and EV measurement approaches that allowed them to enumerate and estimate the size of individual EVs, as well as measure the presence of surface markers to identify phenotypic subsets of EVs. Several fluorescent membrane probes were evaluated and it was found that the voltage sensing dye di-8-ANEPPS could produce vesicle fluorescence in proportion to vesicle surface area, allowing for accurate measurements of EV number and size. Fluorescence-labeled annexin V and anti-CD61 antibody was used to measure the abundance of these surface markers on EVs in rat plasma. It was shown that treatment of platelet rich plasma with calcium ionophore resulted in an increase in the fraction of annexin V and CD61-positive EVs. Vesicle flow cytometry using fluorescence-based detection of EVs has the potential to realize the potential of cell-derived membrane vesicles as functional biomarkers for a variety of applications. V C 2015 International Society for Advancement of Cytometry
Type I interferons (IFNs) are multifunctional cytokines that regulate immune responses and cellular functions but also can have detrimental effects on human health. A tight regulatory network therefore controls IFN signaling, which in turn interferes with medical interventions. The JAK-STAT signaling pathway transmits the IFN extracellular signal to the nucleus for alterations of gene expression. STAT2 is a well-known essential and specific positive effector of type I IFN signaling. Here, we report that STAT2 is also a previously unrecognized crucial component of the USP18-mediated negative feedback control in both, human and murine cells. We found that STAT2 recruits USP18 to the type I IFN receptor subunit IFNAR2 via its constitutive membrane-distal STAT2 binding site. This mechanistic coupling of effector and negative feedback functions of STAT2 provides novel strategies in treatment of IFN signaling related human diseases.
The analysis of individual nanoparticles by flow cytometry involves the measurement of dim signals that are near the detection limits of the instrument. Discriminating the signal from particles of interest from that of background particles in buffers and from optical and electronic noise can be challenging, and requires careful consideration of the measurement approach, control experiments, and scrutiny of the resulting data. In applying this scrutiny, we have come to recognize an artifact that results from the inappropriate selection of the trigger channel threshold that might not be obvious to the casual user. When measuring dim signals close to the noise or background levels, it is intuitive and common for the operator to adjust the trigger threshold to minimize the “false triggers” acquired by the system, and then to run the unknown sample, interpreting the events detected above the background as measurements of individual particles. We show here that when this approach is used to measure particles whose signals fall below the trigger threshold, only coincident events are detected, producing erroneous measurements of both particle number and brightness. We suggest that in many cases, the analysis of dim nanoparticles is best achieved using a fluorescence channel for the trigger.
Type I IFNs (α, β, and others) are a family of cytokines that are produced in physiological conditions as well as in response to the activation of pattern recognition receptors. They are critically important in controlling the host innate and adaptive immune response to viral and some bacterial infections, cancer, and other inflammatory stimuli. However, dysregulation of type I IFN production or response can contribute to immune pathologies termed "interferonopathies", pointing to the importance of balanced activating signals with tightly regulated mechanisms of tuning this signaling. Here, we summarize the recent advances of how type I IFN production and response are controlled at multiple levels of the type I IFN signaling cascade.
Fluorescence is a mainstay of bioanalytical methods, offering sensitive and quantitative reporting, often in multiplexed or multiparameter assays. Perhaps the best example of the latter is flow cytometry, where instruments equipped with multiple lasers and detectors allow measurement of 15 or more different fluorophores simultaneously, but increases beyond this number are limited by the relatively broad emission spectra. Surface enhanced Raman scattering (SERS) from metal nanoparticles can produce signal intensities that rival fluorescence, but with narrower spectral features that allow a greater degree of multiplexing. We are developing nanoparticle SERS tags as well as Raman flow cytometers for multiparameter single cell analysis of suspension or adherent cells. SERS tags are based on plasmonically active nanoparticles (gold nanorods) whose plasmon resonance can be tuned to give optimal SERS signals at a desired excitation wavelength. Raman resonant compounds are adsorbed on the nanoparticles to confer a unique spectral fingerprint on each SERS tag, which are then encapsulated in a polymer coating for conjugation to antibodies or other targeting molecules. Raman flow cytometry employs a high resolution spectral flow cytometer capable of measuring the complete SERS spectra, as well as conventional flow cytometry measurements, from thousands of individual cells per minute. Automated spectral unmixing algorithms extract the contributions of each SERS tag from each cell to generate high content, multiparameter single cell population data. SERS-based cytometry is a powerful complement to conventional fluorescence-based cytometry. The narrow spectral features of the SERS signal enables more distinct probes to be measured in a smaller region of the optical spectrum with a single laser and detector, allowing for higher levels of multiplexing and multiparameter analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.